1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-18 06:11:46 -05:00
sdrangel/plugins/samplesource/hackrf/hackrfinput.cpp

424 lines
11 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2015 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <string.h>
#include <errno.h>
#include <QDebug>
#include "device/deviceapi.h"
#include "util/simpleserializer.h"
#include "dsp/dspcommands.h"
#include "dsp/dspengine.h"
#include "hackrfinput.h"
#include "hackrfgui.h"
#include "hackrfthread.h"
MESSAGE_CLASS_DEFINITION(HackRFInput::MsgConfigureHackRF, Message)
MESSAGE_CLASS_DEFINITION(HackRFInput::MsgReportHackRF, Message)
HackRFInput::HackRFInput(DeviceAPI *deviceAPI) :
m_deviceAPI(deviceAPI),
m_settings(),
m_dev(0),
m_hackRFThread(0),
m_deviceDescription("HackRF")
{
}
HackRFInput::~HackRFInput()
{
stop();
}
bool HackRFInput::init(const Message& cmd)
{
return false;
}
bool HackRFInput::start(int device)
{
QMutexLocker mutexLocker(&m_mutex);
hackrf_error rc;
rc = (hackrf_error) hackrf_init();
if (rc != HACKRF_SUCCESS)
{
qCritical("HackRFInput::start: failed to initiate HackRF library %s", hackrf_error_name(rc));
}
if (m_dev != 0)
{
stop();
}
if (!m_sampleFifo.setSize(1<<19))
{
qCritical("HackRFInput::start: could not allocate SampleFifo");
return false;
}
if ((m_dev = open_hackrf_from_sequence(device)) == 0)
{
qCritical("HackRFInput::start: could not open HackRF #%d", device);
return false;
}
if((m_hackRFThread = new HackRFThread(m_dev, &m_sampleFifo)) == 0)
{
qFatal("HackRFInput::start: out of memory");
stop();
return false;
}
mutexLocker.unlock();
applySettings(m_settings, true);
m_hackRFThread->startWork();
qDebug("HackRFInput::startInput: started");
return true;
}
void HackRFInput::stop()
{
qDebug("HackRFInput::stop");
QMutexLocker mutexLocker(&m_mutex);
if(m_hackRFThread != 0)
{
m_hackRFThread->stopWork();
delete m_hackRFThread;
m_hackRFThread = 0;
}
if(m_dev != 0)
{
hackrf_stop_rx(m_dev);
hackrf_close(m_dev);
m_dev = 0;
}
hackrf_exit();
}
const QString& HackRFInput::getDeviceDescription() const
{
return m_deviceDescription;
}
int HackRFInput::getSampleRate() const
{
int rate = HackRFSampleRates::m_rates_k[m_settings.m_devSampleRateIndex] * 1000;
return (rate / (1<<m_settings.m_log2Decim));
}
quint64 HackRFInput::getCenterFrequency() const
{
return m_settings.m_centerFrequency;
}
bool HackRFInput::handleMessage(const Message& message)
{
if (MsgConfigureHackRF::match(message))
{
MsgConfigureHackRF& conf = (MsgConfigureHackRF&) message;
qDebug() << "HackRFInput::handleMessage: MsgConfigureHackRF";
bool success = applySettings(conf.getSettings(), false);
if (!success)
{
qDebug("HackRFInput::handleMessage: config error");
}
return true;
}
else
{
return false;
}
}
void HackRFInput::setCenterFrequency(quint64 freq_hz)
{
qint64 df = ((qint64)freq_hz * m_settings.m_LOppmTenths) / 10000000LL;
freq_hz += df;
hackrf_error rc = (hackrf_error) hackrf_set_freq(m_dev, static_cast<uint64_t>(freq_hz));
if (rc != HACKRF_SUCCESS)
{
qWarning("HackRFInput::setCenterFrequency: could not frequency to %llu Hz", freq_hz);
}
else
{
qWarning("HackRFInput::setCenterFrequency: frequency set to %llu Hz", freq_hz);
}
}
bool HackRFInput::applySettings(const HackRFSettings& settings, bool force)
{
QMutexLocker mutexLocker(&m_mutex);
bool forwardChange = false;
hackrf_error rc;
qDebug() << "HackRFInput::applySettings";
if (m_settings.m_dcBlock != settings.m_dcBlock)
{
m_settings.m_dcBlock = settings.m_dcBlock;
m_deviceAPI->configureCorrections(m_settings.m_dcBlock, m_settings.m_iqCorrection);
}
if (m_settings.m_iqCorrection != settings.m_iqCorrection)
{
m_settings.m_iqCorrection = settings.m_iqCorrection;
m_deviceAPI->configureCorrections(m_settings.m_dcBlock, m_settings.m_iqCorrection);
}
if ((m_settings.m_devSampleRateIndex != settings.m_devSampleRateIndex) || force)
{
forwardChange = true;
if (settings.m_devSampleRateIndex < HackRFSampleRates::m_nb_rates)
{
m_settings.m_devSampleRateIndex = settings.m_devSampleRateIndex;
}
else
{
m_settings.m_devSampleRateIndex = HackRFSampleRates::m_nb_rates - 1;
}
if (m_dev != 0)
{
rc = (hackrf_error) hackrf_set_sample_rate_manual(m_dev, HackRFSampleRates::m_rates_k[m_settings.m_devSampleRateIndex]*1000, 1);
if (rc != HACKRF_SUCCESS)
{
qCritical("HackRFInput::applySettings: could not set sample rate index %u (%d kS/s): %s", m_settings.m_devSampleRateIndex, HackRFSampleRates::m_rates_k[m_settings.m_devSampleRateIndex], hackrf_error_name(rc));
}
else
{
qDebug("HackRFInput::applySettings: sample rate set to index: %u (%d kS/s)", m_settings.m_devSampleRateIndex, HackRFSampleRates::m_rates_k[m_settings.m_devSampleRateIndex]);
m_hackRFThread->setSamplerate(HackRFSampleRates::m_rates_k[m_settings.m_devSampleRateIndex]);
}
}
}
if ((m_settings.m_log2Decim != settings.m_log2Decim) || force)
{
m_settings.m_log2Decim = settings.m_log2Decim;
forwardChange = true;
if(m_dev != 0)
{
m_hackRFThread->setLog2Decimation(m_settings.m_log2Decim);
qDebug() << "HackRFInput: set decimation to " << (1<<m_settings.m_log2Decim);
}
}
qint64 deviceCenterFrequency = m_settings.m_centerFrequency;
qint64 f_img = deviceCenterFrequency;
quint32 devSampleRate = HackRFSampleRates::m_rates_k[m_settings.m_devSampleRateIndex] * 1000;
if (force || (m_settings.m_centerFrequency != settings.m_centerFrequency) ||
(m_settings.m_LOppmTenths != settings.m_LOppmTenths) ||
(m_settings.m_fcPos != settings.m_fcPos))
{
m_settings.m_centerFrequency = settings.m_centerFrequency;
m_settings.m_LOppmTenths = settings.m_LOppmTenths;
if ((m_settings.m_log2Decim == 0) || (settings.m_fcPos == HackRFSettings::FC_POS_CENTER))
{
deviceCenterFrequency = m_settings.m_centerFrequency;
f_img = deviceCenterFrequency;
}
else
{
if (settings.m_fcPos == HackRFSettings::FC_POS_INFRA)
{
deviceCenterFrequency = m_settings.m_centerFrequency + (devSampleRate / 4);
f_img = deviceCenterFrequency + devSampleRate/2;
}
else if (settings.m_fcPos == HackRFSettings::FC_POS_SUPRA)
{
deviceCenterFrequency = m_settings.m_centerFrequency - (devSampleRate / 4);
f_img = deviceCenterFrequency - devSampleRate/2;
}
}
if (m_dev != 0)
{
setCenterFrequency(deviceCenterFrequency);
qDebug() << "HackRFInput::applySettings: center freq: " << m_settings.m_centerFrequency << " Hz"
<< " device center freq: " << deviceCenterFrequency << " Hz"
<< " device sample rate: " << devSampleRate << "Hz"
<< " Actual sample rate: " << devSampleRate/(1<<m_settings.m_log2Decim) << "Hz"
<< " img: " << f_img << "Hz";
}
forwardChange = true;
}
if ((m_settings.m_fcPos != settings.m_fcPos) || force)
{
m_settings.m_fcPos = settings.m_fcPos;
if(m_dev != 0)
{
m_hackRFThread->setFcPos((int) m_settings.m_fcPos);
qDebug() << "HackRFInput: set fc pos (enum) to " << (int) m_settings.m_fcPos;
}
}
if ((m_settings.m_lnaGain != settings.m_lnaGain) || force)
{
m_settings.m_lnaGain = settings.m_lnaGain;
if (m_dev != 0)
{
rc = (hackrf_error) hackrf_set_lna_gain(m_dev, m_settings.m_lnaGain);
if(rc != HACKRF_SUCCESS)
{
qDebug("HackRFInput::applySettings: airspy_set_lna_gain failed: %s", hackrf_error_name(rc));
}
else
{
qDebug() << "HackRFInput:applySettings: LNA gain set to " << m_settings.m_lnaGain;
}
}
}
if ((m_settings.m_vgaGain != settings.m_vgaGain) || force)
{
m_settings.m_vgaGain = settings.m_vgaGain;
if (m_dev != 0)
{
rc = (hackrf_error) hackrf_set_vga_gain(m_dev, m_settings.m_vgaGain);
if (rc != HACKRF_SUCCESS)
{
qDebug("HackRFInput::applySettings: hackrf_set_vga_gain failed: %s", hackrf_error_name(rc));
}
else
{
qDebug() << "HackRFInput:applySettings: VGA gain set to " << m_settings.m_vgaGain;
}
}
}
if ((m_settings.m_bandwidthIndex != settings.m_bandwidthIndex) || force)
{
if (settings.m_bandwidthIndex < HackRFBandwidths::m_nb_bw)
{
m_settings.m_bandwidthIndex = settings.m_bandwidthIndex;
}
else
{
m_settings.m_bandwidthIndex = HackRFBandwidths::m_nb_bw - 1;
}
if (m_dev != 0)
{
uint32_t bw_index = hackrf_compute_baseband_filter_bw_round_down_lt(HackRFBandwidths::m_bw_k[m_settings.m_bandwidthIndex]*1000);
rc = (hackrf_error) hackrf_set_baseband_filter_bandwidth(m_dev, bw_index);
if (rc != HACKRF_SUCCESS)
{
qDebug("HackRFInput::applySettings: hackrf_set_baseband_filter_bandwidth failed: %s", hackrf_error_name(rc));
}
else
{
qDebug() << "HackRFInput:applySettings: Baseband BW filter set to " << HackRFBandwidths::m_bw_k[m_settings.m_bandwidthIndex] << " kHz";
}
}
}
if ((m_settings.m_biasT != settings.m_biasT) || force)
{
m_settings.m_biasT = settings.m_biasT;
if (m_dev != 0)
{
rc = (hackrf_error) hackrf_set_antenna_enable(m_dev, (m_settings.m_biasT ? 1 : 0));
if(rc != HACKRF_SUCCESS)
{
qDebug("HackRFInput::applySettings: hackrf_set_antenna_enable failed: %s", hackrf_error_name(rc));
}
else
{
qDebug() << "HackRFInput:applySettings: bias tee set to " << m_settings.m_biasT;
}
}
}
if ((m_settings.m_lnaExt != settings.m_lnaExt) || force)
{
m_settings.m_lnaExt = settings.m_lnaExt;
if (m_dev != 0)
{
rc = (hackrf_error) hackrf_set_amp_enable(m_dev, (m_settings.m_lnaExt ? 1 : 0));
if(rc != HACKRF_SUCCESS)
{
qDebug("HackRFInput::applySettings: hackrf_set_amp_enable failed: %s", hackrf_error_name(rc));
}
else
{
qDebug() << "HackRFInput:applySettings: extra LNA set to " << m_settings.m_lnaExt;
}
}
}
if (forwardChange)
{
int sampleRate = devSampleRate/(1<<m_settings.m_log2Decim);
DSPSignalNotification *notif = new DSPSignalNotification(sampleRate, m_settings.m_centerFrequency);
m_deviceAPI->getDeviceInputMessageQueue()->push(notif);
}
return true;
}
hackrf_device *HackRFInput::open_hackrf_from_sequence(int sequence)
{
hackrf_device_list_t *hackrf_devices = hackrf_device_list();
hackrf_device *hackrf_ptr;
hackrf_error rc;
rc = (hackrf_error) hackrf_device_list_open(hackrf_devices, sequence, &hackrf_ptr);
if (rc == HACKRF_SUCCESS)
{
return hackrf_ptr;
}
else
{
return 0;
}
}