mirror of
https://github.com/f4exb/sdrangel.git
synced 2024-11-13 20:01:46 -05:00
151 lines
5.8 KiB
C++
151 lines
5.8 KiB
C++
///////////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2020 Jon Beniston, M7RCE //
|
|
// //
|
|
// This program is free software; you can redistribute it and/or modify //
|
|
// it under the terms of the GNU General Public License as published by //
|
|
// the Free Software Foundation as version 3 of the License, or //
|
|
// (at your option) any later version. //
|
|
// //
|
|
// This program is distributed in the hope that it will be useful, //
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
|
// GNU General Public License V3 for more details. //
|
|
// //
|
|
// You should have received a copy of the GNU General Public License //
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "azel.h"
|
|
|
|
#include <cmath>
|
|
|
|
// Calculate cartesian distance between two points
|
|
double AzEl::cartDistance(const AzElPoint& a, const AzElPoint& b)
|
|
{
|
|
double dx = b.m_cart.m_x - a.m_cart.m_x;
|
|
double dy = b.m_cart.m_y - a.m_cart.m_y;
|
|
double dz = b.m_cart.m_z - a.m_cart.m_z;
|
|
return std::sqrt(dx*dx + dy*dy + dz*dz);
|
|
}
|
|
|
|
// Calculate vector difference then normalise the result
|
|
bool AzEl::normVectorDiff(const AzElCartesian& a, const AzElCartesian& b, AzElCartesian& n)
|
|
{
|
|
n.m_x = b.m_x - a.m_x;
|
|
n.m_y = b.m_y - a.m_y;
|
|
n.m_z = b.m_z - a.m_z;
|
|
double distance = std::sqrt(n.m_x*n.m_x + n.m_y*n.m_y + n.m_z*n.m_z);
|
|
if (distance > 0.0f)
|
|
{
|
|
n.m_x = n.m_x / distance;
|
|
n.m_y = n.m_y / distance;
|
|
n.m_z = n.m_z / distance;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Convert geodetic latitude (as given by GPS) to geocentric latitude (angle from centre of Earth between the point and equator)
|
|
// Both in radians.
|
|
// https://en.wikipedia.org/wiki/Latitude#Geocentric_latitude
|
|
double AzEl::geocentricLatitude(double latRad) const
|
|
{
|
|
double e2 = 0.00669437999014;
|
|
return std::atan((1.0 - e2) * std::tan(latRad));
|
|
}
|
|
|
|
// Earth radius for a given latitude, as it's not quite spherical
|
|
// http://en.wikipedia.org/wiki/Earth_radius
|
|
double AzEl::earthRadiusInMetres(double geodeticLatRad) const
|
|
{
|
|
double equatorialRadius = 6378137.0;
|
|
double polarRadius = 6356752.3;
|
|
double cosLat = std::cos(geodeticLatRad);
|
|
double sinLat = std::sin(geodeticLatRad);
|
|
double t1 = equatorialRadius * equatorialRadius * cosLat;
|
|
double t2 = polarRadius * polarRadius * sinLat;
|
|
double t3 = equatorialRadius * cosLat;
|
|
double t4 = polarRadius * sinLat;
|
|
return std::sqrt((t1*t1 + t2*t2)/(t3*t3 + t4*t4));
|
|
}
|
|
|
|
// Convert spherical coordinate to cartesian. Also calculates radius and a normal vector
|
|
void AzEl::sphericalToCartesian(AzElPoint& point)
|
|
{
|
|
// First calculate cartesian coords for point on Earth's surface
|
|
double latRad = point.m_spherical.m_latitude * M_PI/180.0;
|
|
double longRad = point.m_spherical.m_longitude * M_PI/180.0;
|
|
point.m_radius = earthRadiusInMetres(latRad);
|
|
double clat = geocentricLatitude(latRad);
|
|
double cosLong = cos(longRad);
|
|
double sinLong = sin(longRad);
|
|
double cosLat = cos(clat);
|
|
double sinLat = sin(clat);
|
|
|
|
point.m_cart.m_x = point.m_radius * cosLong * cosLat;
|
|
point.m_cart.m_y = point.m_radius * sinLong * cosLat;
|
|
point.m_cart.m_z = point.m_radius * sinLat;
|
|
|
|
// Calculate normal vector at surface
|
|
double cosGLat = std::cos(latRad);
|
|
double sinGLat = std::sin(latRad);
|
|
|
|
point.m_norm.m_x = cosGLat * cosLong;
|
|
point.m_norm.m_y = cosGLat * sinLong;
|
|
point.m_norm.m_z = sinGLat;
|
|
|
|
// Add altitude along normal vector
|
|
point.m_cart.m_x += point.m_spherical.m_altitude * point.m_norm.m_x;
|
|
point.m_cart.m_y += point.m_spherical.m_altitude * point.m_norm.m_y;
|
|
point.m_cart.m_z += point.m_spherical.m_altitude * point.m_norm.m_z;
|
|
}
|
|
|
|
// Calculate azimuth of target from location
|
|
void AzEl::calcAzimuth()
|
|
{
|
|
AzElPoint bRot;
|
|
|
|
// Rotate so location is at lat=0, long=0
|
|
bRot.m_spherical.m_latitude = m_target.m_spherical.m_latitude;
|
|
bRot.m_spherical.m_longitude = m_target.m_spherical.m_longitude - m_location.m_spherical.m_longitude;
|
|
bRot.m_spherical.m_altitude = m_target.m_spherical.m_altitude;
|
|
sphericalToCartesian(bRot);
|
|
|
|
double aLat = geocentricLatitude(-m_location.m_spherical.m_latitude * M_PI / 180.0);
|
|
double aCos = std::cos(aLat);
|
|
double aSin = std::sin(aLat);
|
|
|
|
//double bx = (bRot.m_cart.m_x * aCos) - (bRot.m_cart.m_z * aSin);
|
|
double by = bRot.m_cart.m_y;
|
|
double bz = (bRot.m_cart.m_x * aSin) + (bRot.m_cart.m_z * aCos);
|
|
|
|
if (bz*bz + by*by > 1e-6)
|
|
{
|
|
double theta = std::atan2(bz, by) * 180.0 / M_PI;
|
|
m_azimuth = 90.0 - theta;
|
|
if (m_azimuth < 0.0)
|
|
m_azimuth += 360.0;
|
|
else if (m_azimuth > 360.0)
|
|
m_azimuth -= 360.0;
|
|
}
|
|
else
|
|
m_azimuth = 0.0;
|
|
}
|
|
|
|
// Calculate elevation of target from location
|
|
void AzEl::calcElevation()
|
|
{
|
|
AzElCartesian bma;
|
|
if (normVectorDiff(m_location.m_cart, m_target.m_cart, bma))
|
|
{
|
|
m_elevation = 90.0 - (180.0/M_PI) * std::acos(bma.m_x * m_location.m_norm.m_x
|
|
+ bma.m_y * m_location.m_norm.m_y
|
|
+ bma.m_z * m_location.m_norm.m_z);
|
|
}
|
|
else
|
|
m_elevation = 0.0;
|
|
}
|