1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-13 20:01:46 -05:00
sdrangel/plugins/samplesink/soapysdroutput/soapysdroutputthread.cpp

525 lines
18 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2015 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <algorithm>
#include <SoapySDR/Formats.hpp>
#include <SoapySDR/Errors.hpp>
#include "dsp/samplesourcefifo.h"
#include "soapysdroutputthread.h"
SoapySDROutputThread::SoapySDROutputThread(SoapySDR::Device* dev, unsigned int nbTxChannels, QObject* parent) :
QThread(parent),
m_running(false),
m_dev(dev),
m_sampleRate(0),
m_nbChannels(nbTxChannels),
m_interpolatorType(InterpolatorFloat)
{
qDebug("SoapySDROutputThread::SoapySDROutputThread");
m_channels = new Channel[nbTxChannels];
}
SoapySDROutputThread::~SoapySDROutputThread()
{
qDebug("SoapySDROutputThread::~SoapySDROutputThread");
if (m_running) {
stopWork();
}
delete[] m_channels;
}
void SoapySDROutputThread::startWork()
{
if (m_running) {
return;
}
m_startWaitMutex.lock();
start();
while(!m_running) {
m_startWaiter.wait(&m_startWaitMutex, 100);
}
m_startWaitMutex.unlock();
}
void SoapySDROutputThread::stopWork()
{
if (!m_running) {
return;
}
m_running = false;
wait();
}
void SoapySDROutputThread::run()
{
m_running = true;
m_startWaiter.wakeAll();
unsigned int nbFifos = getNbFifos();
if ((m_nbChannels > 0) && (nbFifos > 0))
{
// build channels list
std::vector<std::size_t> channels(m_nbChannels);
std::iota(channels.begin(), channels.end(), 0); // Fill with 0, 1, ..., m_nbChannels-1.
//initialize the sample rate for all channels
qDebug("SoapySDROutputThread::run: m_sampleRate: %u", m_sampleRate);
for (const auto &it : channels) {
m_dev->setSampleRate(SOAPY_SDR_TX, it, m_sampleRate);
}
// Determine sample format to be used
double fullScale(0.0);
std::string format = m_dev->getNativeStreamFormat(SOAPY_SDR_TX, channels.front(), fullScale);
qDebug("SoapySDROutputThread::run: format: %s fullScale: %f", format.c_str(), fullScale);
if ((format == "CS8") && (fullScale == 128.0)) { // 8 bit signed - native
m_interpolatorType = Interpolator8;
} else if ((format == "CS16") && (fullScale == 2048.0)) { // 12 bit signed - native
m_interpolatorType = Interpolator12;
} else if ((format == "CS16") && (fullScale == 32768.0)) { // 16 bit signed - native
m_interpolatorType = Interpolator16;
} else { // for other types make a conversion to float
m_interpolatorType = InterpolatorFloat;
format = "CF32";
}
unsigned int elemSize = SoapySDR::formatToSize(format); // sample (I+Q) size in bytes
SoapySDR::Stream *stream = m_dev->setupStream(SOAPY_SDR_TX, format, channels);
//allocate buffers for the stream read/write
const unsigned int numElems = m_dev->getStreamMTU(stream); // number of samples (I+Q)
std::vector<std::vector<char>> buffMem(m_nbChannels, std::vector<char>(elemSize*numElems));
std::vector<void *> buffs(m_nbChannels);
for (std::size_t i = 0; i < m_nbChannels; i++) {
buffs[i] = buffMem[i].data();
}
m_dev->activateStream(stream);
int flags(0);
long long timeNs(0);
float blockTime = ((float) numElems) / (m_sampleRate <= 0 ? 1024000 : m_sampleRate);
long initialTtimeoutUs = 10000000 * blockTime; // 10 times the block time
long timeoutUs = initialTtimeoutUs < 250000 ? 250000 : initialTtimeoutUs; // 250ms minimum
qDebug("SoapySDROutputThread::run: numElems: %u elemSize: %u initialTtimeoutUs: %ld timeoutUs: %ld",
numElems, elemSize, initialTtimeoutUs, timeoutUs);
qDebug("SoapySDROutputThread::run: start running loop");
while (m_running)
{
int ret = m_dev->writeStream(stream, buffs.data(), numElems, flags, timeNs, timeoutUs);
if (ret == SOAPY_SDR_TIMEOUT)
{
qWarning("SoapySDROutputThread::run: timeout: flags: %d timeNs: %lld timeoutUs: %ld", flags, timeNs, timeoutUs);
}
else if (ret == SOAPY_SDR_OVERFLOW)
{
qWarning("SoapySDROutputThread::run: overflow: flags: %d timeNs: %lld timeoutUs: %ld", flags, timeNs, timeoutUs);
}
else if (ret < 0)
{
qCritical("SoapySDROutputThread::run: Unexpected write stream error: %s", SoapySDR::errToStr(ret));
break;
}
if (m_nbChannels > 1)
{
callbackMO(buffs, numElems); // size given in number of samples (1 item per sample)
}
else
{
switch (m_interpolatorType)
{
case Interpolator8:
callbackSO8((qint8*) buffs[0], numElems);
break;
case Interpolator12:
callbackSO12((qint16*) buffs[0], numElems);
break;
case Interpolator16:
callbackSO16((qint16*) buffs[0], numElems);
break;
case InterpolatorFloat:
default:
callbackSOIF((float*) buffs[0], numElems);
break;
}
}
}
qDebug("SoapySDROutputThread::run: stop running loop");
m_dev->deactivateStream(stream);
m_dev->closeStream(stream);
}
else
{
qWarning("SoapySDROutputThread::run: no channels or FIFO allocated. Aborting");
}
m_running = false;
}
unsigned int SoapySDROutputThread::getNbFifos()
{
unsigned int fifoCount = 0;
for (unsigned int i = 0; i < m_nbChannels; i++)
{
if (m_channels[i].m_sampleFifo) {
fifoCount++;
}
}
return fifoCount;
}
void SoapySDROutputThread::setLog2Interpolation(unsigned int channel, unsigned int log2_interp)
{
if (channel < m_nbChannels) {
m_channels[channel].m_log2Interp = log2_interp;
}
}
unsigned int SoapySDROutputThread::getLog2Interpolation(unsigned int channel) const
{
if (channel < m_nbChannels) {
return m_channels[channel].m_log2Interp;
} else {
return 0;
}
}
void SoapySDROutputThread::setFifo(unsigned int channel, SampleSourceFifo *sampleFifo)
{
if (channel < m_nbChannels) {
m_channels[channel].m_sampleFifo = sampleFifo;
}
}
SampleSourceFifo *SoapySDROutputThread::getFifo(unsigned int channel)
{
if (channel < m_nbChannels) {
return m_channels[channel].m_sampleFifo;
} else {
return 0;
}
}
void SoapySDROutputThread::callbackMO(std::vector<void *>& buffs, qint32 samplesPerChannel)
{
for(unsigned int ichan = 0; ichan < m_nbChannels; ichan++)
{
if (m_channels[ichan].m_sampleFifo)
{
switch (m_interpolatorType)
{
case Interpolator8:
callbackSO8((qint8*) buffs[ichan], samplesPerChannel, ichan);
break;
case Interpolator12:
callbackSO12((qint16*) buffs[ichan], samplesPerChannel, ichan);
break;
case Interpolator16:
callbackSO16((qint16*) buffs[ichan], samplesPerChannel, ichan);
break;
case InterpolatorFloat:
default:
// TODO
break;
}
}
else // no FIFO for this channel means channel is unused: fill with zeros
{
switch (m_interpolatorType)
{
case Interpolator8:
std::fill((qint8*) buffs[ichan], (qint8*) buffs[ichan] + 2*samplesPerChannel, 0);
break;
case Interpolator12:
case Interpolator16:
std::fill((qint16*) buffs[ichan], (qint16*) buffs[ichan] + 2*samplesPerChannel, 0);
break;
case InterpolatorFloat:
default:
std::fill((float*) buffs[ichan], (float*) buffs[ichan] + 2*samplesPerChannel, 0.0f);
break;
}
}
}
}
// Interpolate according to specified log2 (ex: log2=4 => decim=16). len is a number of samples (not a number of I or Q)
void SoapySDROutputThread::callbackSO8(qint8* buf, qint32 len, unsigned int channel)
{
if (m_channels[channel].m_sampleFifo)
{
SampleVector& data = m_channels[channel].m_sampleFifo->getData();
unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End;
m_channels[channel].m_sampleFifo->read(len/(1<<m_channels[channel].m_log2Interp), iPart1Begin, iPart1End, iPart2Begin, iPart2End);
if (iPart1Begin != iPart1End) {
callbackPart8(buf, data, iPart1Begin, iPart1End, channel);
}
unsigned int shift = (iPart1End - iPart1Begin)*(1<<m_channels[channel].m_log2Interp);
if (iPart2Begin != iPart2End) {
callbackPart8(buf + 2*shift, data, iPart2Begin, iPart2End, channel);
}
}
else
{
std::fill(buf, buf+2*len, 0);
}
}
void SoapySDROutputThread::callbackPart8(qint8* buf, SampleVector& data, unsigned int iBegin, unsigned int iEnd, unsigned int channel)
{
SampleVector::iterator beginRead = data.begin() + iBegin;
int len = 2*(iEnd - iBegin)*(1<<m_channels[channel].m_log2Interp);
if (m_channels[channel].m_log2Interp == 0)
{
m_channels[channel].m_interpolators8.interpolate1(&beginRead, buf, len);
}
else
{
switch (m_channels[channel].m_log2Interp)
{
case 1:
m_channels[channel].m_interpolators8.interpolate2_cen(&beginRead, buf, len);
break;
case 2:
m_channels[channel].m_interpolators8.interpolate4_cen(&beginRead, buf, len);
break;
case 3:
m_channels[channel].m_interpolators8.interpolate8_cen(&beginRead, buf, len);
break;
case 4:
m_channels[channel].m_interpolators8.interpolate16_cen(&beginRead, buf, len);
break;
case 5:
m_channels[channel].m_interpolators8.interpolate32_cen(&beginRead, buf, len);
break;
case 6:
m_channels[channel].m_interpolators8.interpolate64_cen(&beginRead, buf, len);
break;
default:
break;
}
}
}
void SoapySDROutputThread::callbackSO12(qint16* buf, qint32 len, unsigned int channel)
{
if (m_channels[channel].m_sampleFifo)
{
SampleVector& data = m_channels[channel].m_sampleFifo->getData();
unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End;
m_channels[channel].m_sampleFifo->read(len/(1<<m_channels[channel].m_log2Interp), iPart1Begin, iPart1End, iPart2Begin, iPart2End);
if (iPart1Begin != iPart1End) {
callbackPart12(buf, data, iPart1Begin, iPart1End, channel);
}
unsigned int shift = (iPart1End - iPart1Begin)*(1<<m_channels[channel].m_log2Interp);
if (iPart2Begin != iPart2End) {
callbackPart12(buf + 2*shift, data, iPart2Begin, iPart2End, channel);
}
}
else
{
std::fill(buf, buf+2*len, 0);
}
}
void SoapySDROutputThread::callbackPart12(qint16* buf, SampleVector& data, unsigned int iBegin, unsigned int iEnd, unsigned int channel)
{
SampleVector::iterator beginRead = data.begin() + iBegin;
int len = 2*(iEnd - iBegin)*(1<<m_channels[channel].m_log2Interp);
if (m_channels[channel].m_log2Interp == 0)
{
m_channels[channel].m_interpolators12.interpolate1(&beginRead, buf, len);
}
else
{
switch (m_channels[channel].m_log2Interp)
{
case 1:
m_channels[channel].m_interpolators12.interpolate2_cen(&beginRead, buf, len);
break;
case 2:
m_channels[channel].m_interpolators12.interpolate4_cen(&beginRead, buf, len);
break;
case 3:
m_channels[channel].m_interpolators12.interpolate8_cen(&beginRead, buf, len);
break;
case 4:
m_channels[channel].m_interpolators12.interpolate16_cen(&beginRead, buf, len);
break;
case 5:
m_channels[channel].m_interpolators12.interpolate32_cen(&beginRead, buf, len);
break;
case 6:
m_channels[channel].m_interpolators12.interpolate64_cen(&beginRead, buf, len);
break;
default:
break;
}
}
}
void SoapySDROutputThread::callbackSO16(qint16* buf, qint32 len, unsigned int channel)
{
if (m_channels[channel].m_sampleFifo)
{
SampleVector& data = m_channels[channel].m_sampleFifo->getData();
unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End;
m_channels[channel].m_sampleFifo->read(len/(1<<m_channels[channel].m_log2Interp), iPart1Begin, iPart1End, iPart2Begin, iPart2End);
if (iPart1Begin != iPart1End) {
callbackPart16(buf, data, iPart1Begin, iPart1End, channel);
}
unsigned int shift = (iPart1End - iPart1Begin)*(1<<m_channels[channel].m_log2Interp);
if (iPart2Begin != iPart2End) {
callbackPart16(buf + 2*shift, data, iPart2Begin, iPart2End, channel);
}
}
else
{
std::fill(buf, buf+2*len, 0);
}
}
void SoapySDROutputThread::callbackPart16(qint16* buf, SampleVector& data, unsigned int iBegin, unsigned int iEnd, unsigned int channel)
{
SampleVector::iterator beginRead = data.begin() + iBegin;
int len = 2*(iEnd - iBegin)*(1<<m_channels[channel].m_log2Interp);
if (m_channels[channel].m_log2Interp == 0)
{
m_channels[channel].m_interpolators16.interpolate1(&beginRead, buf, len);
}
else
{
switch (m_channels[channel].m_log2Interp)
{
case 1:
m_channels[channel].m_interpolators16.interpolate2_cen(&beginRead, buf, len);
break;
case 2:
m_channels[channel].m_interpolators16.interpolate4_cen(&beginRead, buf, len);
break;
case 3:
m_channels[channel].m_interpolators16.interpolate8_cen(&beginRead, buf, len);
break;
case 4:
m_channels[channel].m_interpolators16.interpolate16_cen(&beginRead, buf, len);
break;
case 5:
m_channels[channel].m_interpolators16.interpolate32_cen(&beginRead, buf, len);
break;
case 6:
m_channels[channel].m_interpolators16.interpolate64_cen(&beginRead, buf, len);
break;
default:
break;
}
}
}
void SoapySDROutputThread::callbackSOIF(float* buf, qint32 len, unsigned int channel)
{
if (m_channels[channel].m_sampleFifo)
{
SampleVector& data = m_channels[channel].m_sampleFifo->getData();
unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End;
m_channels[channel].m_sampleFifo->read(len/(1<<m_channels[channel].m_log2Interp), iPart1Begin, iPart1End, iPart2Begin, iPart2End);
if (iPart1Begin != iPart1End) {
callbackPartF(buf, data, iPart1Begin, iPart1End, channel);
}
unsigned int shift = (iPart1End - iPart1Begin)*(1<<m_channels[channel].m_log2Interp);
if (iPart2Begin != iPart2End) {
callbackPartF(buf + 2*shift, data, iPart2Begin, iPart2End, channel);
}
}
else
{
std::fill(buf, buf+2*len, 0.0f);
}
}
void SoapySDROutputThread::callbackPartF(float* buf, SampleVector& data, unsigned int iBegin, unsigned int iEnd, unsigned int channel)
{
SampleVector::iterator beginRead = data.begin() + iBegin;
int len = 2*(iEnd - iBegin)*(1<<m_channels[channel].m_log2Interp);
if (m_channels[channel].m_log2Interp == 0)
{
m_channels[channel].m_interpolatorsIF.interpolate1(&beginRead, buf, len);
}
else
{
switch (m_channels[channel].m_log2Interp)
{
case 1:
m_channels[channel].m_interpolatorsIF.interpolate2_cen(&beginRead, buf, len);
break;
case 2:
m_channels[channel].m_interpolatorsIF.interpolate4_cen(&beginRead, buf, len);
break;
case 3:
m_channels[channel].m_interpolatorsIF.interpolate8_cen(&beginRead, buf, len);
break;
case 4:
m_channels[channel].m_interpolatorsIF.interpolate16_cen(&beginRead, buf, len);
break;
case 5:
m_channels[channel].m_interpolatorsIF.interpolate32_cen(&beginRead, buf, len);
break;
case 6:
m_channels[channel].m_interpolatorsIF.interpolate64_cen(&beginRead, buf, len);
break;
default:
break;
}
}
}