1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-09-21 12:26:34 -04:00
sdrangel/wdsp/RXA.cpp

1305 lines
51 KiB
C++

/* RXA.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013, 2014, 2015, 2016, 2023 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "RXA.hpp"
#include "amd.hpp"
#include "meter.hpp"
#include "shift.hpp"
#include "resample.hpp"
#include "bandpass.hpp"
#include "bps.hpp"
#include "nbp.hpp"
#include "snba.hpp"
#include "bpsnba.hpp"
#include "sender.hpp"
#include "amsq.hpp"
#include "fmd.hpp"
#include "fmsq.hpp"
#include "eqp.hpp"
#include "anf.hpp"
#include "anr.hpp"
#include "emnr.hpp"
#include "patchpanel.hpp"
#include "siphon.hpp"
#include "cblock.hpp"
#include "ssql.hpp"
#include "iir.hpp"
#include "fircore.hpp"
#include "wcpAGC.hpp"
#include "anb.hpp"
#include "nob.hpp"
namespace WDSP {
RXA* RXA::create_rxa (
int in_rate, // input samplerate
int out_rate, // output samplerate
int dsp_rate, // sample rate for mainstream dsp processing
int dsp_size // number complex samples processed per buffer in mainstream dsp processing
)
{
RXA* rxa = new RXA;
rxa->in_rate = in_rate;
rxa->out_rate = out_rate;
rxa->dsp_rate = dsp_rate;
rxa->dsp_size = dsp_size;
if (in_rate >= dsp_rate)
rxa->dsp_insize = dsp_size * (in_rate / dsp_rate);
else
rxa->dsp_insize = dsp_size / (dsp_rate / in_rate);
if (out_rate >= dsp_rate)
rxa->dsp_outsize = dsp_size * (out_rate / dsp_rate);
else
rxa->dsp_outsize = dsp_size / (dsp_rate / out_rate);
rxa->mode = RXA_LSB;
rxa->inbuff = new float[1 * rxa->dsp_insize * 2]; // (float *) malloc0 (1 * ch.dsp_insize * sizeof (complex));
rxa->outbuff = new float[1 * rxa->dsp_outsize * 2]; // (float *) malloc0 (1 * ch.dsp_outsize * sizeof (complex));
rxa->midbuff = new float[2 * rxa->dsp_size * 2]; // (float *) malloc0 (2 * ch.dsp_size * sizeof (complex));
std::fill(rxa->meter, rxa->meter + RXA_METERTYPE_LAST, 0);
// Noise blanker (ANB or "NB")
rxa->anb = new ANB(
0, // run
rxa->dsp_insize, // input buffer size
rxa->inbuff, // pointer to input buffer
rxa->inbuff, // pointer to output buffer
rxa->in_rate, // samplerate
0.0001, // tau
0.0001, // hang time
0.0001, // advance time
0.05, // back tau
30 // thershold
);
// Noise blanker (NOB or "NB2")
rxa->nob = new NOB(
0, // run
rxa->dsp_insize, // input buffer size
rxa->inbuff, // pointer to input buffer
rxa->inbuff, // pointer to output buffer
rxa->in_rate, // samplerate
0, // mode (zero)
0.0001, // advance slew time
0.0001, // advance time
0.0001, // hang slew time
0.0001, // hang time
0.025, // max_imp_seq_time:
0.05, // back tau
30
);
// Ftequency shifter - shift to select a slice of spectrum
rxa->shift = new SHIFT(
0, // run
rxa->dsp_insize, // input buffer size
rxa->inbuff, // pointer to input buffer
rxa->inbuff, // pointer to output buffer
rxa->in_rate, // samplerate
0.0); // amount to shift (Hz)
// Input resampler - resample to dsp rate for main processing
rxa->rsmpin = new RESAMPLE(
0, // run - will be turned ON below if needed
rxa->dsp_insize, // input buffer size
rxa->inbuff, // pointer to input buffer
rxa->midbuff, // pointer to output buffer
rxa->in_rate, // input samplerate
rxa->dsp_rate, // output samplerate
0.0, // select cutoff automatically
0, // select ncoef automatically
1.0); // gain
// Input meter - ADC
rxa->adcmeter = new METER(
0, // run
0, // optional pointer to another 'run'
rxa->dsp_size, // size
rxa->midbuff, // pointer to buffer
rxa->dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
rxa->meter, // result vector
RXA_ADC_AV, // index for average value
RXA_ADC_PK, // index for peak value
-1, // index for gain value - disabled
0); // pointer for gain computation
// Notched bandpass section
// notch database
rxa->ndb = new NOTCHDB (
0, // master run for all nbp's
1024); // max number of notches
// notched bandpass
rxa->nbp0 = new NBP (
1, // run, always runs
0, // run the notches
0, // position
rxa->dsp_size, // buffer size
std::max(2048, rxa->dsp_size), // number of coefficients
0, // minimum phase flag
rxa->midbuff, // pointer to input buffer
rxa->midbuff, // pointer to output buffer
-4150.0, // lower filter frequency
-150.0, // upper filter frequency
rxa->dsp_rate, // sample rate
0, // wintype
1.0, // gain
1, // auto-increase notch width
1025, // max number of passbands
rxa->ndb); // addr of database pointer
// bandpass for snba
rxa->bpsnba = new BPSNBA (
0, // bpsnba run flag
0, // run the notches
0, // position
rxa->dsp_size, // size
std::max(2048, rxa->dsp_size), // number of filter coefficients
0, // minimum phase flag
rxa->midbuff, // input buffer
rxa->midbuff, // output buffer
rxa->dsp_rate, // samplerate
+ 250.0, // abs value of cutoff nearest zero
+ 5700.0, // abs value of cutoff farthest zero
- 5700.0, // current low frequency
- 250.0, // current high frequency
0, // wintype
1.0, // gain
1, // auto-increase notch width
1025, // max number of passbands
rxa->ndb); // addr of database pointer
// Post filter display send - send spectrum display (after S-meter in the block diagram)
rxa->sender = new SENDER (
0, // run
0, // flag
0, // mode
rxa->dsp_size, // size
rxa->midbuff // pointer to input buffer
);
// End notched bandpass section
// S-meter
rxa->smeter = new METER(
1, // run
0, // optional pointer to another 'run'
rxa->dsp_size, // size
rxa->midbuff, // pointer to buffer
rxa->dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
rxa->meter, // result vector
RXA_S_AV, // index for average value
RXA_S_PK, // index for peak value
-1, // index for gain value - disabled
0); // pointer for gain computation
// AM squelch capture (for other modes than FM)
rxa->amsq = new AMSQ(
0, // run
rxa->dsp_size, // buffer size
rxa->midbuff, // pointer to signal input buffer used by xamsq
rxa->midbuff, // pointer to signal output buffer used by xamsq
rxa->midbuff, // pointer to trigger buffer that xamsqcap will capture
rxa->dsp_rate, // sample rate
0.010, // time constant for averaging signal level
0.070, // signal up transition time
0.070, // signal down transition time
0.009, // signal level to initiate tail
0.010, // signal level to initiate unmute
0.000, // minimum tail length
1.500, // maximum tail length
0.0); // muted gain
// AM/SAM demodulator
rxa->amd = new AMD(
0, // run - OFF by default
rxa->dsp_size, // buffer size
rxa->midbuff, // pointer to input buffer
rxa->midbuff, // pointer to output buffer
0, // mode: 0->AM, 1->SAM
1, // levelfade: 0->OFF, 1->ON
0, // sideband mode: 0->OFF
rxa->dsp_rate, // sample rate
-2000.0, // minimum lock frequency
+2000.0, // maximum lock frequency
1.0, // zeta
250.0, // omegaN
0.02, // tauR
1.4); // tauI
// FM demodulator
rxa->fmd = new FMD(
0, // run
rxa->dsp_size, // buffer size
rxa->midbuff, // pointer to input buffer
rxa->midbuff, // pointer to output buffer
rxa->dsp_rate, // sample rate
5000.0, // deviation
300.0, // f_low
3000.0, // f_high
-8000.0, // fmin
+8000.0, // fmax
1.0, // zeta
20000.0, // omegaN
0.02, // tau - for dc removal
0.5, // audio gain
1, // run tone filter
254.1, // ctcss frequency
std::max(2048, rxa->dsp_size), // # coefs for de-emphasis filter
0, // min phase flag for de-emphasis filter
std::max(2048, rxa->dsp_size), // # coefs for audio cutoff filter
0); // min phase flag for audio cutoff filter
// FM squelch apply
rxa->fmsq = new FMSQ(
0, // run
rxa->dsp_size, // buffer size
rxa->midbuff, // pointer to input signal buffer
rxa->midbuff, // pointer to output signal buffer
rxa->fmd->audio, // pointer to trigger buffer
rxa->dsp_rate, // sample rate
5000.0, // cutoff freq for noise filter (Hz)
&rxa->fmd->pllpole, // pointer to pole frequency of the fmd pll (Hz)
0.100, // delay time after channel flush
0.001, // tau for noise averaging
0.100, // tau for long noise averaging
0.050, // signal up transition time
0.010, // signal down transition time
0.750, // noise level to initiate tail
0.562, // noise level to initiate unmute
0.000, // minimum tail time
0.100, // maximum tail time
std::max(2048, rxa->dsp_size), // number of coefficients for noise filter
0); // minimum phase flag
// Spectral noise blanker (SNB)
rxa->snba = new SNBA(
0, // run
rxa->midbuff, // input buffer
rxa->midbuff, // output buffer
rxa->dsp_rate, // input / output sample rate
12000, // internal processing sample rate
rxa->dsp_size, // buffer size
4, // overlap factor to use
256, // frame size to use; sized for 12K rate
64, // asize
2, // npasses
8.0, // k1
20.0, // k2
10, // b
2, // pre
2, // post
0.5, // pmultmin
200.0, // output resampler low cutoff
5400.0); // output resampler high cutoff
// Equalizer
{
float default_F[11] = {0.0, 32.0, 63.0, 125.0, 250.0, 500.0, 1000.0, 2000.0, 4000.0, 8000.0, 16000.0};
//float default_G[11] = {0.0, -12.0, -12.0, -12.0, -1.0, +1.0, +4.0, +9.0, +12.0, -10.0, -10.0};
float default_G[11] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
rxa->eqp = new EQP(
0, // run - OFF by default
rxa->dsp_size, // buffer size
std::max(2048, rxa->dsp_size), // number of filter coefficients
0, // minimum phase flag
rxa->midbuff, // pointer to input buffer
rxa->midbuff, // pointer to output buffer
10, // number of frequencies
default_F, // frequency vector
default_G, // gain vector
0, // cutoff mode
0, // wintype
rxa->dsp_rate); // sample rate
}
// Auto notch filter
rxa->anf = ANF::create_anf (
0, // run - OFF by default
0, // position
rxa->dsp_size, // buffer size
rxa->midbuff, // pointer to input buffer
rxa->midbuff, // pointer to output buffer
ANF_DLINE_SIZE, // dline_size
64, // taps
16, // delay
0.0001, // two_mu
0.1, // gamma
1.0, // lidx
0.0, // lidx_min
200.0, // lidx_max
6.25e-12, // ngamma
6.25e-10, // den_mult
1.0, // lincr
3.0); // ldecr
// LMS noise reduction (ANR or "NR")
rxa->anr = ANR::create_anr (
0, // run - OFF by default
0, // position
rxa->dsp_size, // buffer size
rxa->midbuff, // pointer to input buffer
rxa->midbuff, // pointer to output buffer
ANR_DLINE_SIZE, // dline_size
64, // taps
16, // delay
0.0001, // two_mu
0.1, // gamma
120.0, // lidx
120.0, // lidx_min
200.0, // lidx_max
0.001, // ngamma
6.25e-10, // den_mult
1.0, // lincr
3.0); // ldecr
// Spectral noise reduyction (EMNR or "NR2")
rxa->emnr = EMNR::create_emnr (
0, // run
0, // position
rxa->dsp_size, // buffer size
rxa->midbuff, // input buffer
rxa->midbuff, // output buffer
4096, // FFT size
4, // overlap
rxa->dsp_rate, // samplerate
0, // window type
1.0, // gain
2, // gain method
0, // npe_method
1); // ae_run
// AGC
rxa->agc = WCPAGC::create_wcpagc (
1, // run
3, // mode
1, // peakmode = envelope
rxa->midbuff, // pointer to input buffer
rxa->midbuff, // pointer to output buffer
rxa->dsp_size, // buffer size
rxa->dsp_rate, // sample rate
0.001, // tau_attack
0.250, // tau_decay
4, // n_tau
10000.0, // max_gain
1.5, // var_gain
1000.0, // fixed_gain
1.0, // max_input
1.0, // out_target
0.250, // tau_fast_backaverage
0.005, // tau_fast_decay
5.0, // pop_ratio
1, // hang_enable
0.500, // tau_hang_backmult
0.250, // hangtime
0.250, // hang_thresh
0.100); // tau_hang_decay
// AGC meter
rxa->agcmeter = new METER(
0, // run
0, // optional pointer to another 'run'
rxa->dsp_size, // size
rxa->midbuff, // pointer to buffer
rxa->dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
rxa->meter, // result vector
RXA_AGC_AV, // index for average value
RXA_AGC_PK, // index for peak value
RXA_AGC_GAIN, // index for gain value
&rxa->agc->gain); // pointer for gain computation
// Bandpass filter - After spectral noise reduction in the block diagram
rxa->bp1 = BANDPASS::create_bandpass (
1, // run - used only with ( AM || ANF || ANR || EMNR)
0, // position
rxa->dsp_size, // buffer size
std::max(2048, rxa->dsp_size), // number of coefficients
0, // flag for minimum phase
rxa->midbuff, // pointer to input buffer
rxa->midbuff, // pointer to output buffer
-4150.0, // lower filter frequency
-150.0, // upper filter frequency
rxa->dsp_rate, // sample rate
1, // wintype
1.0); // gain
// Scope/phase display send - pull phase & scope display data
rxa->sip1 = SIPHON::create_siphon (
0, // run - needed only for phase display
0, // position
0, // mode
0, // disp
rxa->dsp_size, // size of input buffer
rxa->midbuff, // input buffer
4096, // number of samples to store
4096, // fft size for spectrum
0); // specmode
// AM carrier block
rxa->cbl = CBL::create_cbl (
0, // run - needed only if set to ON
rxa->dsp_size, // buffer size
rxa->midbuff, // pointer to input buffer
rxa->midbuff, // pointer to output buffer
0, // mode
rxa->dsp_rate, // sample rate
0.02); // tau
// CW peaking filter
rxa->speak = SPEAK::create_speak (
0, // run
rxa->dsp_size, // buffer size,
rxa->midbuff, // pointer to input buffer
rxa->midbuff, // pointer to output buffer
rxa->dsp_rate, // sample rate
600.0, // center frequency
100.0, // bandwidth
2.0, // gain
4, // number of stages
1); // design
// Dolly filter (multiple peak filter) - default is 2 for RTTY
{
int def_enable[2] = {1, 1};
double def_freq[2] = {2125.0, 2295.0};
double def_bw[2] = {75.0, 75.0};
double def_gain[2] = {1.0, 1.0};
rxa->mpeak = MPEAK::create_mpeak (
0, // run
rxa->dsp_size, // size
rxa->midbuff, // pointer to input buffer
rxa->midbuff, // pointer to output buffer
rxa->dsp_rate, // sample rate
2, // number of peaking filters
def_enable, // enable vector
def_freq, // frequency vector
def_bw, // bandwidth vector
def_gain, // gain vector
4 ); // number of stages
}
// Syllabic squelch (Voice suelch) - Not in the block diagram
rxa->ssql = SSQL::create_ssql(
0, // run
rxa->dsp_size, // size
rxa->midbuff, // pointer to input buffer
rxa->midbuff, // pointer to output buffer
rxa->dsp_rate, // sample rate
0.070, // signal up transition time
0.070, // signal down transition time
0.0, // muted gain
0.1, // mute time-constant
0.1, // unmute time-constant
0.08, // window threshold
0.8197, // trigger threshold
2400, // ring size for f_to_v converter
2000.0); // max freq for f_to_v converter
// PatchPanel
rxa->panel = PANEL::create_panel (
1, // run
rxa->dsp_size, // size
rxa->midbuff, // pointer to input buffer
rxa->midbuff, // pointer to output buffer
4.0, // gain1
1.0, // gain2I
1.0, // gain2Q
3, // 3 for I and Q
0); // no copy
// AM squelch apply - absent but in the block diagram
// Output resampler
rxa->rsmpout = new RESAMPLE(
0, // run - will be turned ON below if needed
rxa->dsp_size, // input buffer size
rxa->midbuff, // pointer to input buffer
rxa->outbuff, // pointer to output buffer
rxa->dsp_rate, // input sample rate
rxa->out_rate, // output sample rate
0.0, // select cutoff automatically
0, // select ncoef automatically
1.0); // gain
// turn OFF / ON resamplers as needed
ResCheck (*rxa);
return rxa;
}
void RXA::destroy_rxa (RXA *rxa)
{
delete (rxa->rsmpout);
PANEL::destroy_panel (rxa->panel);
SSQL::destroy_ssql (rxa->ssql);
MPEAK::destroy_mpeak (rxa->mpeak);
SPEAK::destroy_speak (rxa->speak);
CBL::destroy_cbl (rxa->cbl);
SIPHON::destroy_siphon (rxa->sip1);
BANDPASS::destroy_bandpass (rxa->bp1);
delete (rxa->agcmeter);
WCPAGC::destroy_wcpagc (rxa->agc);
EMNR::destroy_emnr (rxa->emnr);
ANR::destroy_anr (rxa->anr);
ANF::destroy_anf (rxa->anf);
delete (rxa->eqp);
delete (rxa->snba);
delete (rxa->fmsq);
delete (rxa->fmd);
delete (rxa->amd);
delete (rxa->amsq);
delete (rxa->smeter);
delete (rxa->sender);
delete (rxa->bpsnba);
delete (rxa->nbp0);
delete (rxa->ndb);
delete (rxa->adcmeter);
delete (rxa->rsmpin);
delete (rxa->shift);
delete (rxa->nob);
delete (rxa->anb);
delete[] (rxa->midbuff);
delete[] (rxa->outbuff);
delete[] (rxa->inbuff);
delete rxa;
}
void RXA::flush_rxa (RXA *rxa)
{
std::fill(rxa->inbuff, rxa->inbuff + 1 * rxa->dsp_insize * 2, 0);
std::fill(rxa->outbuff, rxa->outbuff + 1 * rxa->dsp_outsize * 2, 0);
std::fill(rxa->midbuff, rxa->midbuff + 2 * rxa->dsp_size * 2, 0);
rxa->anb->flush();
rxa->nob->flush();
rxa->shift->flush();
rxa->rsmpin->flush();
rxa->adcmeter->flush();
rxa->nbp0->flush();
rxa->bpsnba->flush();
rxa->sender->flush();
rxa->smeter->flush();
rxa->amsq->flush();
rxa->amd->flush();
rxa->fmd->flush();
rxa->fmsq->flush();
rxa->snba->flush();
rxa->eqp->flush();
ANF::flush_anf (rxa->anf);
ANR::flush_anr (rxa->anr);
EMNR::flush_emnr (rxa->emnr);
WCPAGC::flush_wcpagc (rxa->agc);
rxa->agcmeter->flush();
BANDPASS::flush_bandpass (rxa->bp1);
SIPHON::flush_siphon (rxa->sip1);
CBL::flush_cbl (rxa->cbl);
SPEAK::flush_speak (rxa->speak);
MPEAK::flush_mpeak (rxa->mpeak);
SSQL::flush_ssql (rxa->ssql);
PANEL::flush_panel (rxa->panel);
rxa->rsmpout->flush();
}
void RXA::xrxa (RXA *rxa)
{
rxa->anb->execute();
rxa->nob->execute();
rxa->shift->execute();
rxa->rsmpin->execute();
rxa->adcmeter->execute();
rxa->bpsnba->exec_in(0);
rxa->nbp0->execute(0);
rxa->smeter->execute();
rxa->sender->execute();
rxa->amsq->xcap();
rxa->bpsnba->exec_out(0);
rxa->amd->execute();
rxa->fmd->execute();
rxa->fmsq->execute();
rxa->bpsnba->exec_in(1);
rxa->bpsnba->exec_out(1);
rxa->snba->execute();
rxa->eqp->execute();
ANF::xanf (rxa->anf, 0);
ANR::xanr (rxa->anr, 0);
EMNR::xemnr (rxa->emnr, 0);
BANDPASS::xbandpass (rxa->bp1, 0);
WCPAGC::xwcpagc (rxa->agc);
ANF::xanf (rxa->anf, 1);
ANR::xanr (rxa->anr, 1);
EMNR::xemnr (rxa->emnr, 1);
BANDPASS::xbandpass (rxa->bp1, 1);
rxa->agcmeter->execute();
SIPHON::xsiphon (rxa->sip1, 0);
CBL::xcbl (rxa->cbl);
SPEAK::xspeak (rxa->speak);
MPEAK::xmpeak (rxa->mpeak);
SSQL::xssql (rxa->ssql);
PANEL::xpanel (rxa->panel);
rxa->amsq->execute();
rxa->rsmpout->execute();
}
void RXA::setInputSamplerate (RXA *rxa, int in_rate)
{
if (in_rate >= rxa->dsp_rate)
rxa->dsp_insize = rxa->dsp_size * (in_rate / rxa->dsp_rate);
else
rxa->dsp_insize = rxa->dsp_size / (rxa->dsp_rate / in_rate);
rxa->in_rate = in_rate;
// buffers
delete[] (rxa->inbuff);
rxa->inbuff = new float[1 * rxa->dsp_insize * 2]; // (float *)malloc0(1 * ch.dsp_insize * sizeof(complex));
// anb
rxa->anb->setBuffers(rxa->inbuff, rxa->inbuff);
rxa->anb->setSize(rxa->dsp_insize);
rxa->anb->setSamplerate(rxa->in_rate);
// nob
rxa->nob->setBuffers(rxa->inbuff, rxa->inbuff);
rxa->nob->setSize(rxa->dsp_insize);
rxa->nob->setSamplerate(rxa->in_rate);
// shift
rxa->shift->setBuffers(rxa->inbuff, rxa->inbuff);
rxa->shift->setSize(rxa->dsp_insize);
rxa->shift->setSamplerate(rxa->in_rate);
// input resampler
rxa->rsmpin->setBuffers(rxa->inbuff, rxa->midbuff);
rxa->rsmpin->setSize(rxa->dsp_insize);
rxa->rsmpin->setInRate(rxa->in_rate);
ResCheck (*rxa);
}
void RXA::setOutputSamplerate (RXA *rxa, int out_rate)
{
if (out_rate >= rxa->dsp_rate)
rxa->dsp_outsize = rxa->dsp_size * (out_rate / rxa->dsp_rate);
else
rxa->dsp_outsize = rxa->dsp_size / (rxa->dsp_rate / out_rate);
rxa->out_rate = out_rate;
// buffers
delete[] (rxa->outbuff);
rxa->outbuff = new float[1 * rxa->dsp_outsize * 2]; // (float *)malloc0(1 * ch.dsp_outsize * sizeof(complex));
// output resampler
rxa->rsmpout->setBuffers(rxa->midbuff, rxa->outbuff);
rxa->rsmpout->setOutRate(rxa->out_rate);
ResCheck (*rxa);
}
void RXA::setDSPSamplerate (RXA *rxa, int dsp_rate)
{
if (rxa->in_rate >= dsp_rate)
rxa->dsp_insize = rxa->dsp_size * (rxa->in_rate / dsp_rate);
else
rxa->dsp_insize = rxa->dsp_size / (dsp_rate / rxa->in_rate);
if (rxa->out_rate >= dsp_rate)
rxa->dsp_outsize = rxa->dsp_size * (rxa->out_rate / dsp_rate);
else
rxa->dsp_outsize = rxa->dsp_size / (dsp_rate / rxa->out_rate);
rxa->dsp_rate = dsp_rate;
// buffers
delete[] (rxa->inbuff);
rxa->inbuff = new float[1 * rxa->dsp_insize * 2]; // (float *)malloc0(1 * rxa->dsp_insize * sizeof(complex));
delete[] (rxa->outbuff);
rxa->outbuff = new float[1 * rxa->dsp_outsize * 2]; // (float *)malloc0(1 * rxa->dsp_outsize * sizeof(complex));
// anb
rxa->anb->setBuffers(rxa->inbuff, rxa->inbuff);
rxa->anb->setSize(rxa->dsp_insize);
// nob
rxa->nob->setBuffers(rxa->inbuff, rxa->inbuff);
rxa->nob->setSize(rxa->dsp_insize);
// shift
rxa->shift->setBuffers(rxa->inbuff, rxa->inbuff);
rxa->shift->setSize(rxa->dsp_insize);
// input resampler
rxa->rsmpin->setBuffers(rxa->inbuff, rxa->midbuff);
rxa->rsmpin->setSize(rxa->dsp_insize);
rxa->rsmpin->setOutRate(rxa->dsp_rate);
// dsp_rate blocks
rxa->adcmeter->setSamplerate(rxa->dsp_rate);
rxa->nbp0->setSamplerate(rxa->dsp_rate);
rxa->bpsnba->setSamplerate(rxa->dsp_rate);
rxa->smeter->setSamplerate(rxa->dsp_rate);
rxa->sender->setSamplerate(rxa->dsp_rate);
rxa->amsq->setSamplerate(rxa->dsp_rate);
rxa->amd->setSamplerate(rxa->dsp_rate);
rxa->fmd->setSamplerate(rxa->dsp_rate);
rxa->fmsq->setBuffers(rxa->midbuff, rxa->midbuff, rxa->fmd->audio);
rxa->fmsq->setSamplerate(rxa->dsp_rate);
rxa->snba->setSamplerate(rxa->dsp_rate);
rxa->eqp->setSamplerate(rxa->dsp_rate);
ANF::setSamplerate_anf (rxa->anf, rxa->dsp_rate);
ANR::setSamplerate_anr (rxa->anr, rxa->dsp_rate);
EMNR::setSamplerate_emnr (rxa->emnr, rxa->dsp_rate);
BANDPASS::setSamplerate_bandpass (rxa->bp1, rxa->dsp_rate);
WCPAGC::setSamplerate_wcpagc (rxa->agc, rxa->dsp_rate);
rxa->agcmeter->setSamplerate(rxa->dsp_rate);
SIPHON::setSamplerate_siphon (rxa->sip1, rxa->dsp_rate);
CBL::setSamplerate_cbl (rxa->cbl, rxa->dsp_rate);
SPEAK::setSamplerate_speak (rxa->speak, rxa->dsp_rate);
MPEAK::setSamplerate_mpeak (rxa->mpeak, rxa->dsp_rate);
SSQL::setSamplerate_ssql (rxa->ssql, rxa->dsp_rate);
PANEL::setSamplerate_panel (rxa->panel, rxa->dsp_rate);
// output resampler
rxa->rsmpout->setBuffers(rxa->midbuff, rxa->outbuff);
rxa->rsmpout->setInRate(rxa->dsp_rate);
ResCheck (*rxa);
}
void RXA::setDSPBuffsize (RXA *rxa, int dsp_size)
{
if (rxa->in_rate >= rxa->dsp_rate)
rxa->dsp_insize = dsp_size * (rxa->in_rate / rxa->dsp_rate);
else
rxa->dsp_insize = dsp_size / (rxa->dsp_rate / rxa->in_rate);
if (rxa->out_rate >= rxa->dsp_rate)
rxa->dsp_outsize = dsp_size * (rxa->out_rate / rxa->dsp_rate);
else
rxa->dsp_outsize = dsp_size / (rxa->dsp_rate / rxa->out_rate);
rxa->dsp_size = dsp_size;
// buffers
delete[](rxa->inbuff);
rxa->inbuff = new float[1 * rxa->dsp_insize * 2]; // (float *)malloc0(1 * rxa->dsp_insize * sizeof(complex));
delete[] (rxa->midbuff);
rxa->midbuff = new float[2 * rxa->dsp_size * 2]; // (float *)malloc0(2 * rxa->dsp_size * sizeof(complex));
delete[] (rxa->outbuff);
rxa->outbuff = new float[1 * rxa->dsp_outsize * 2]; // (float *)malloc0(1 * rxa->dsp_outsize * sizeof(complex));
// anb
rxa->anb->setBuffers(rxa->inbuff, rxa->inbuff);
rxa->anb->setSize(rxa->dsp_insize);
// nob
rxa->nob->setBuffers(rxa->inbuff, rxa->inbuff);
rxa->nob->setSize(rxa->dsp_insize);
// shift
rxa->shift->setBuffers(rxa->inbuff, rxa->inbuff);
rxa->shift->setSize(rxa->dsp_insize);
// input resampler
rxa->rsmpin->setBuffers(rxa->inbuff, rxa->midbuff);
rxa->rsmpin->setSize(rxa->dsp_insize);
// dsp_size blocks
rxa->adcmeter->setBuffers(rxa->midbuff);
rxa->adcmeter->setSize(rxa->dsp_size);
rxa->nbp0->setBuffers(rxa->midbuff, rxa->midbuff);
rxa->nbp0->setSize(rxa->dsp_size);
rxa->bpsnba->setBuffers(rxa->midbuff, rxa->midbuff);
rxa->bpsnba->setSize(rxa->dsp_size);
rxa->smeter->setBuffers(rxa->midbuff);
rxa->smeter->setSize(rxa->dsp_size);
rxa->sender->setBuffers(rxa->midbuff);
rxa->sender->setSize(rxa->dsp_size);
rxa->amsq->setBuffers(rxa->midbuff, rxa->midbuff, rxa->midbuff);
rxa->amsq->setSize(rxa->dsp_size);
rxa->amd->setBuffers(rxa->midbuff, rxa->midbuff);
rxa->amd->setSize(rxa->dsp_size);
rxa->fmd->setBuffers(rxa->midbuff, rxa->midbuff);
rxa->fmd->setSize(rxa->dsp_size);
rxa->fmsq->setBuffers(rxa->midbuff, rxa->midbuff, rxa->fmd->audio);
rxa->fmsq->setSize(rxa->dsp_size);
rxa->snba->setBuffers(rxa->midbuff, rxa->midbuff);
rxa->snba->setSize(rxa->dsp_size);
rxa->eqp->setBuffers(rxa->midbuff, rxa->midbuff);
rxa->eqp->setSize(rxa->dsp_size);
ANF::setBuffers_anf (rxa->anf, rxa->midbuff, rxa->midbuff);
ANF::setSize_anf (rxa->anf, rxa->dsp_size);
ANR::setBuffers_anr (rxa->anr, rxa->midbuff, rxa->midbuff);
ANR::setSize_anr (rxa->anr, rxa->dsp_size);
EMNR::setBuffers_emnr (rxa->emnr, rxa->midbuff, rxa->midbuff);
EMNR::setSize_emnr (rxa->emnr, rxa->dsp_size);
BANDPASS::setBuffers_bandpass (rxa->bp1, rxa->midbuff, rxa->midbuff);
BANDPASS::setSize_bandpass (rxa->bp1, rxa->dsp_size);
WCPAGC::setBuffers_wcpagc (rxa->agc, rxa->midbuff, rxa->midbuff);
WCPAGC::setSize_wcpagc (rxa->agc, rxa->dsp_size);
rxa->agcmeter->setBuffers(rxa->midbuff);
rxa->agcmeter->setSize(rxa->dsp_size);
SIPHON::setBuffers_siphon (rxa->sip1, rxa->midbuff);
SIPHON::setSize_siphon (rxa->sip1, rxa->dsp_size);
CBL::setBuffers_cbl (rxa->cbl, rxa->midbuff, rxa->midbuff);
CBL::setSize_cbl (rxa->cbl, rxa->dsp_size);
SPEAK::setBuffers_speak (rxa->speak, rxa->midbuff, rxa->midbuff);
SPEAK::setSize_speak (rxa->speak, rxa->dsp_size);
MPEAK::setBuffers_mpeak (rxa->mpeak, rxa->midbuff, rxa->midbuff);
MPEAK::setSize_mpeak (rxa->mpeak, rxa->dsp_size);
SSQL::setBuffers_ssql (rxa->ssql, rxa->midbuff, rxa->midbuff);
SSQL::setSize_ssql (rxa->ssql, rxa->dsp_size);
PANEL::setBuffers_panel (rxa->panel, rxa->midbuff, rxa->midbuff);
PANEL::setSize_panel (rxa->panel, rxa->dsp_size);
// output resampler
rxa->rsmpout->setBuffers(rxa->midbuff, rxa->outbuff);
rxa->rsmpout->setSize(rxa->dsp_size);
}
void RXA::setSpectrumProbe(BufferProbe *spectrumProbe)
{
sender->SetSpectrum(1, spectrumProbe);
sender->run = 1;
}
/********************************************************************************************************
* *
* RXA Mode & Filter Controls *
* *
********************************************************************************************************/
void RXA::SetMode (RXA& rxa, int mode)
{
if (rxa.mode != mode)
{
int amd_run = (mode == RXA_AM) || (mode == RXA_SAM);
bpsnbaCheck (rxa, mode, rxa.ndb->master_run);
bp1Check (
rxa,
amd_run,
rxa.snba->run,
rxa.emnr->run,
rxa.anf->run,
rxa.anr->run
);
rxa.mode = mode;
rxa.amd->run = 0;
rxa.fmd->run = 0;
switch (mode)
{
case RXA_AM:
rxa.amd->run = 1;
rxa.amd->mode = 0;
break;
case RXA_SAM:
rxa.amd->run = 1;
rxa.amd->mode = 1;
break;
case RXA_DSB:
break;
case RXA_FM:
rxa.fmd->run = 1;
break;
default:
break;
}
bp1Set (rxa);
bpsnbaSet (rxa); // update variables
}
}
void RXA::ResCheck (RXA& rxa)
{
// turn OFF/ON resamplers depending upon whether they're needed
RESAMPLE *a = rxa.rsmpin;
if (rxa.in_rate != rxa.dsp_rate)
a->run = 1;
else
a->run = 0;
a = rxa.rsmpout;
if (rxa.dsp_rate != rxa.out_rate)
a->run = 1;
else
a->run = 0;
}
void RXA::bp1Check (
RXA& rxa,
int amd_run,
int snba_run,
int emnr_run,
int anf_run,
int anr_run
)
{
BANDPASS *a = rxa.bp1;
float gain;
if (amd_run ||
snba_run ||
emnr_run ||
anf_run ||
anr_run
)
gain = 2.0;
else
gain = 1.0;
if (a->gain != gain)
BANDPASS::setGain_bandpass (a, gain, 0);
}
void RXA::bp1Set (RXA& rxa)
{
BANDPASS *a = rxa.bp1;
int old = a->run;
if ((rxa.amd->run == 1) ||
(rxa.snba->run == 1) ||
(rxa.emnr->run == 1) ||
(rxa.anf->run == 1) ||
(rxa.anr->run == 1)
)
a->run = 1;
else
a->run = 0;
if (!old && a->run)
BANDPASS::flush_bandpass (a);
FIRCORE::setUpdate_fircore (a->p);
}
void RXA::bpsnbaCheck (RXA& rxa, int mode, int notch_run)
{
// for BPSNBA: set run, position, freqs, run_notches
// call this upon change in RXA_mode, snba_run, notch_master_run
BPSNBA *a = rxa.bpsnba;
float f_low = 0.0, f_high = 0.0;
int run_notches = 0;
switch (mode)
{
case RXA_LSB:
case RXA_CWL:
case RXA_DIGL:
f_low = -a->abs_high_freq;
f_high = -a->abs_low_freq;
run_notches = notch_run;
break;
case RXA_USB:
case RXA_CWU:
case RXA_DIGU:
f_low = +a->abs_low_freq;
f_high = +a->abs_high_freq;
run_notches = notch_run;
break;
case RXA_AM:
case RXA_SAM:
case RXA_DSB:
f_low = +a->abs_low_freq;
f_high = +a->abs_high_freq;
run_notches = 0;
break;
case RXA_FM:
f_low = +a->abs_low_freq;
f_high = +a->abs_high_freq;
run_notches = 0;
break;
case RXA_DRM:
case RXA_SPEC:
break;
}
// 'run' and 'position' are examined at run time; no filter changes required.
// Recalculate filter if frequencies OR 'run_notches' changed.
if ((a->f_low != f_low ) ||
(a->f_high != f_high ) ||
(a->run_notches != run_notches))
{
a->f_low = f_low;
a->f_high = f_high;
a->run_notches = run_notches;
// f_low, f_high, run_notches are needed for the filter recalculation
rxa.bpsnba->recalc_bpsnba_filter(0);
}
}
void RXA::bpsnbaSet (RXA& rxa)
{
// for BPSNBA: set run, position, freqs, run_notches
// call this upon change in RXA_mode, snba_run, notch_master_run
BPSNBA *a = rxa.bpsnba;
switch (rxa.mode)
{
case RXA_LSB:
case RXA_CWL:
case RXA_DIGL:
a->run = rxa.snba->run;
a->position = 0;
break;
case RXA_USB:
case RXA_CWU:
case RXA_DIGU:
a->run = rxa.snba->run;
a->position = 0;
break;
case RXA_AM:
case RXA_SAM:
case RXA_DSB:
a->run = rxa.snba->run;
a->position = 1;
break;
case RXA_FM:
a->run = rxa.snba->run;
a->position = 1;
break;
case RXA_DRM:
case RXA_SPEC:
a->run = 0;
break;
}
FIRCORE::setUpdate_fircore (a->bpsnba->fircore);
}
void RXA::UpdateNBPFiltersLightWeight (RXA& rxa)
{ // called when setting tune freq or shift freq
rxa.nbp0->calc_lightweight();
rxa.bpsnba->bpsnba->calc_lightweight();
}
void RXA::UpdateNBPFilters(RXA& rxa)
{
NBP *a = rxa.nbp0;
BPSNBA *b = rxa.bpsnba;
if (a->fnfrun)
{
a->calc_impulse();
FIRCORE::setImpulse_fircore (a->fircore, a->impulse, 1);
delete[] (a->impulse);
}
if (b->bpsnba->fnfrun)
{
b->recalc_bpsnba_filter(1);
}
}
int RXA::NBPAddNotch (RXA& rxa, int notch, double fcenter, double fwidth, int active)
{
NOTCHDB *b = rxa.ndb;
int rval = b->addNotch(notch, fcenter, fwidth, active);
if (rval == 0) {
RXA::UpdateNBPFilters (rxa);
}
return rval;
}
int RXA::NBPGetNotch (RXA& rxa, int notch, double* fcenter, double* fwidth, int* active)
{
NOTCHDB *a = rxa.ndb;
int rval = a->getNotch(notch, fcenter, fwidth, active);
return rval;
}
int RXA::NBPDeleteNotch (RXA& rxa, int notch)
{
NOTCHDB *a = rxa.ndb;
int rval = a->deleteNotch(notch);
if (rval == 0) {
RXA::UpdateNBPFilters (rxa);
}
return rval;
}
int RXA::NBPEditNotch (RXA& rxa, int notch, double fcenter, double fwidth, int active)
{
NOTCHDB *a = rxa.ndb;
int rval = a->editNotch(notch, fcenter, fwidth, active);
if (rval == 0) {
RXA::UpdateNBPFilters (rxa);
}
return rval;
}
void RXA::NBPGetNumNotches (RXA& rxa, int* nnotches)
{
NOTCHDB *a = rxa.ndb;
a->getNumNotches(nnotches);
}
void RXA::NBPSetTuneFrequency (RXA& rxa, double tunefreq)
{
NOTCHDB *a;
a = rxa.ndb;
if (tunefreq != a->tunefreq)
{
a->tunefreq = tunefreq;
RXA::UpdateNBPFiltersLightWeight (rxa);
}
}
void RXA::NBPSetShiftFrequency (RXA& rxa, double shift)
{
NOTCHDB *a;
a = rxa.ndb;
if (shift != a->shift)
{
a->shift = shift;
RXA::UpdateNBPFiltersLightWeight (rxa);
}
}
void RXA::NBPSetNotchesRun (RXA& rxa, int run)
{
NOTCHDB *a = rxa.ndb;
NBP *b = rxa.nbp0;
if ( run != a->master_run)
{
a->master_run = run; // update variables
b->fnfrun = a->master_run;
RXA::bpsnbaCheck (rxa, rxa.mode, run);
b->calc_impulse(); // recalc nbp impulse response
FIRCORE::setImpulse_fircore (b->fircore, b->impulse, 0); // calculate new filter masks
delete[] (b->impulse);
RXA::bpsnbaSet (rxa);
FIRCORE::setUpdate_fircore (b->fircore); // apply new filter masks
}
}
void RXA::NBPSetWindow (RXA& rxa, int wintype)
{
NBP *a;
BPSNBA *b;
a = rxa.nbp0;
b = rxa.bpsnba;
if ((a->wintype != wintype))
{
a->wintype = wintype;
a->calc_impulse();
FIRCORE::setImpulse_fircore (a->fircore, a->impulse, 1);
delete[] (a->impulse);
}
if ((b->wintype != wintype))
{
b->wintype = wintype;
b->recalc_bpsnba_filter(1);
}
}
void RXA::NBPSetAutoIncrease (RXA& rxa, int autoincr)
{
NBP *a;
BPSNBA *b;
a = rxa.nbp0;
b = rxa.bpsnba;
if ((a->autoincr != autoincr))
{
a->autoincr = autoincr;
a->calc_impulse();
FIRCORE::setImpulse_fircore (a->fircore, a->impulse, 1);
delete[] (a->impulse);
}
if ((b->autoincr != autoincr))
{
b->autoincr = autoincr;
b->recalc_bpsnba_filter(1);
}
}
void RXA::SetAMDRun(RXA& rxa, int _run)
{
if (rxa.amd->run != _run)
{
RXA::bp1Check (
rxa,
_run,
rxa.snba->run,
rxa.emnr->run,
rxa.anf->run,
rxa.anr->run
);
rxa.amd->run = _run;
RXA::bp1Set (rxa);
}
}
void RXA::SetSNBARun (RXA& rxa, int run)
{
SNBA *a = rxa.snba;
if (a->run != run)
{
RXA::bpsnbaCheck (rxa, rxa.mode, rxa.ndb->master_run);
RXA::bp1Check (
rxa,
rxa.amd->run,
run,
rxa.emnr->run,
rxa.anf->run,
rxa.anr->run
);
a->run = run;
RXA::bp1Set (rxa);
RXA::bpsnbaSet (rxa);
}
}
/********************************************************************************************************
* *
* Collectives *
* *
********************************************************************************************************/
void RXA::SetPassband (RXA& rxa, float f_low, float f_high)
{
BANDPASS::SetBandpassFreqs (rxa, f_low, f_high); // After spectral noise reduction ( AM || ANF || ANR || EMNR)
rxa.snba->setOutputBandwidth (f_low, f_high); // Spectral noise blanker (SNB)
rxa.nbp0->SetFreqs (f_low, f_high); // Notched bandpass
}
void RXA::SetNC (RXA& rxa, int nc)
{
int oldstate = rxa.state;
rxa.nbp0->SetNC (nc);
rxa.bpsnba->SetNC (nc);
BANDPASS::SetBandpassNC (rxa, nc);
rxa.eqp->setNC (nc);
rxa.fmsq->setNC (nc);
rxa.fmd->setNCde (nc);
rxa.fmd->setNCaud (nc);
rxa.state = oldstate;
}
void RXA::SetMP (RXA& rxa, int mp)
{
rxa.nbp0->SetMP (mp);
rxa.bpsnba->SetMP (mp);
BANDPASS::SetBandpassMP (rxa, mp);
rxa.eqp->setMP (mp);
rxa.fmsq->setMP (mp);
rxa.fmd->setMPde (mp);
rxa.fmd->setMPaud (mp);
}
} // namespace WDSP