1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-02 16:01:14 -04:00
sdrangel/sdrbase/dsp/channelizer.cpp

191 lines
6.0 KiB
C++

#include "dsp/channelizer.h"
#include "dsp/inthalfbandfilter.h"
#include "dsp/dspcommands.h"
//#include <cstdio>
#include <iostream>
Channelizer::Channelizer(SampleSink* sampleSink) :
m_sampleSink(sampleSink),
m_inputSampleRate(100000),
m_requestedOutputSampleRate(100000),
m_requestedCenterFrequency(0),
m_currentOutputSampleRate(100000),
m_currentCenterFrequency(0)
{
}
Channelizer::~Channelizer()
{
freeFilterChain();
}
void Channelizer::configure(MessageQueue* messageQueue, int sampleRate, int centerFrequency)
{
Message* cmd = DSPConfigureChannelizer::create(sampleRate, centerFrequency);
cmd->submit(messageQueue, this);
}
void Channelizer::feed(SampleVector::const_iterator begin, SampleVector::const_iterator end, bool positiveOnly)
{
if(m_sampleSink == NULL) {
m_sampleBuffer.clear();
return;
}
for(SampleVector::const_iterator sample = begin; sample != end; ++sample) {
Sample s(*sample);
FilterStages::iterator stage = m_filterStages.begin();
while(stage != m_filterStages.end()) {
if(!(*stage)->work(&s))
break;
++stage;
}
if(stage == m_filterStages.end())
m_sampleBuffer.push_back(s);
}
m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), positiveOnly);
m_sampleBuffer.clear();
}
void Channelizer::start()
{
if(m_sampleSink != NULL)
m_sampleSink->start();
}
void Channelizer::stop()
{
if(m_sampleSink != NULL)
m_sampleSink->stop();
}
bool Channelizer::handleMessage(Message* cmd)
{
if(DSPSignalNotification::match(cmd)) {
DSPSignalNotification* signal = (DSPSignalNotification*)cmd;
m_inputSampleRate = signal->getSampleRate();
applyConfiguration();
cmd->completed();
if(m_sampleSink != NULL) {
signal = DSPSignalNotification::create(m_currentOutputSampleRate, m_currentCenterFrequency);
if(!m_sampleSink->handleMessage(signal))
signal->completed();
}
emit inputSampleRateChanged();
return true;
} else if(DSPConfigureChannelizer::match(cmd)) {
DSPConfigureChannelizer* chan = (DSPConfigureChannelizer*)cmd;
m_requestedOutputSampleRate = chan->getSampleRate();
m_requestedCenterFrequency = chan->getCenterFrequency();
applyConfiguration();
cmd->completed();
if(m_sampleSink != NULL) {
DSPSignalNotification* signal = DSPSignalNotification::create(m_currentOutputSampleRate, m_currentCenterFrequency);
if(!m_sampleSink->handleMessage(signal))
signal->completed();
}
return true;
} else {
if(m_sampleSink != NULL)
return m_sampleSink->handleMessage(cmd);
else return false;
}
}
void Channelizer::applyConfiguration()
{
freeFilterChain();
m_currentCenterFrequency = createFilterChain(
m_inputSampleRate / -2, m_inputSampleRate / 2,
m_requestedCenterFrequency - m_requestedOutputSampleRate / 2, m_requestedCenterFrequency + m_requestedOutputSampleRate / 2);
m_currentOutputSampleRate = m_inputSampleRate / (1 << m_filterStages.size());
std::cerr << "Channelizer::applyConfiguration in=" << m_inputSampleRate
<< ", req=" << m_requestedOutputSampleRate
<< ", out=" << m_currentOutputSampleRate
<< ", fc=" << m_currentCenterFrequency
<< std::endl;
}
Channelizer::FilterStage::FilterStage(Mode mode) :
m_filter(new IntHalfbandFilter),
m_workFunction(NULL)
{
switch(mode) {
case ModeCenter:
m_workFunction = &IntHalfbandFilter::workDecimateCenter;
break;
case ModeLowerHalf:
m_workFunction = &IntHalfbandFilter::workDecimateLowerHalf;
break;
case ModeUpperHalf:
m_workFunction = &IntHalfbandFilter::workDecimateUpperHalf;
break;
}
}
Channelizer::FilterStage::~FilterStage()
{
delete m_filter;
}
bool Channelizer::signalContainsChannel(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) const
{
//qDebug(" testing signal [%f, %f], channel [%f, %f]", sigStart, sigEnd, chanStart, chanEnd);
if(sigEnd <= sigStart)
return false;
if(chanEnd <= chanStart)
return false;
return (sigStart <= chanStart) && (sigEnd >= chanEnd);
}
Real Channelizer::createFilterChain(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd)
{
Real sigBw = sigEnd - sigStart;
Real safetyMargin = sigBw / 20;
Real rot = sigBw / 4;
safetyMargin = 0;
//fprintf(stderr, "Channelizer::createFilterChain: ");
//fprintf(stderr, "Signal [%.1f, %.1f] (BW %.1f), Channel [%.1f, %.1f], Rot %.1f, Safety %.1f\n", sigStart, sigEnd, sigBw, chanStart, chanEnd, rot, safetyMargin);
#if 1
// check if it fits into the left half
if(signalContainsChannel(sigStart + safetyMargin, sigStart + sigBw / 2.0 - safetyMargin, chanStart, chanEnd)) {
//fprintf(stderr, "-> take left half (rotate by +1/4 and decimate by 2)\n");
m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf));
return createFilterChain(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd);
}
// check if it fits into the right half
if(signalContainsChannel(sigEnd - sigBw / 2.0f + safetyMargin, sigEnd - safetyMargin, chanStart, chanEnd)) {
//fprintf(stderr, "-> take right half (rotate by -1/4 and decimate by 2)\n");
m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf));
return createFilterChain(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd);
}
// check if it fits into the center
// Was: if(signalContainsChannel(sigStart + rot + safetyMargin, sigStart + rot + sigBw / 2.0f - safetyMargin, chanStart, chanEnd)) {
if(signalContainsChannel(sigStart + rot + safetyMargin, sigEnd - rot - safetyMargin, chanStart, chanEnd)) {
//fprintf(stderr, "-> take center half (decimate by 2)\n");
m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter));
// Was: return createFilterChain(sigStart + rot, sigStart + sigBw / 2.0f + rot, chanStart, chanEnd);
return createFilterChain(sigStart + rot, sigEnd - rot, chanStart, chanEnd);
}
#endif
Real ofs = ((chanEnd - chanStart) / 2.0 + chanStart) - ((sigEnd - sigStart) / 2.0 + sigStart);
//fprintf(stderr, "-> complete (final BW %.1f, frequency offset %.1f)\n", sigBw, ofs);
return ofs;
}
void Channelizer::freeFilterChain()
{
for(FilterStages::iterator it = m_filterStages.begin(); it != m_filterStages.end(); ++it)
delete *it;
m_filterStages.clear();
}