1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-23 00:18:37 -05:00
sdrangel/plugins/samplesource/remotetcpinput/remotetcpinputtcphandler.cpp
srcejon 8bf1a2f803 Remote TCP updates:
Add support for public list of SDRangel servers that can be displayed on Map.
Add FLAC and zlib IQ compression.
Add IQ squelch for compression.
Add remote device/antenna position and direction reporting.
Add text messaging.
2024-09-22 10:44:30 +01:00

2224 lines
84 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2022-2024 Jon Beniston, M7RCE <jon@beniston.com> //
// Copyright (C) 2022 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// Copyright (C) 2022 Jiří Pinkava <jiri.pinkava@rossum.ai> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QDebug>
#include "device/deviceapi.h"
#include "util/message.h"
#include "maincore.h"
#include "remotetcpinputtcphandler.h"
#include "remotetcpinput.h"
#include "../../channelrx/remotetcpsink/remotetcpprotocol.h"
MESSAGE_CLASS_DEFINITION(RemoteTCPInputTCPHandler::MsgReportRemoteDevice, Message)
MESSAGE_CLASS_DEFINITION(RemoteTCPInputTCPHandler::MsgReportConnection, Message)
MESSAGE_CLASS_DEFINITION(RemoteTCPInputTCPHandler::MsgConfigureTcpHandler, Message)
RemoteTCPInputTCPHandler::RemoteTCPInputTCPHandler(SampleSinkFifo *sampleFifo, DeviceAPI *deviceAPI, ReplayBuffer<FixReal> *replayBuffer) :
m_deviceAPI(deviceAPI),
m_running(false),
m_dataSocket(nullptr),
m_tcpBuf(nullptr),
m_sampleFifo(sampleFifo),
m_replayBuffer(replayBuffer),
m_messageQueueToInput(nullptr),
m_messageQueueToGUI(nullptr),
m_fillBuffer(true),
m_timer(this),
m_reconnectTimer(this),
m_sdra(false),
m_converterBuffer(nullptr),
m_converterBufferNbSamples(0),
m_settings(),
m_remoteControl(true),
m_iqOnly(false),
m_decoder(nullptr),
m_zOutBuf(m_zBufSize, '\0'),
m_blacklisted(false),
m_magsq(0.0f),
m_magsqSum(0.0f),
m_magsqPeak(0.0f),
m_magsqCount(0)
{
m_sampleFifo->setSize(5000000); // Start with large FIFO, to avoid having to resize
m_tcpBuf = new char[m_sampleFifo->size()*2*4];
m_timer.setInterval(50); // Previously 125, but this results in an obviously slow spectrum refresh rate
connect(&m_reconnectTimer, SIGNAL(timeout()), this, SLOT(reconnect()));
m_reconnectTimer.setSingleShot(true);
// Initialise zlib decompressor
m_zStream.zalloc = Z_NULL;
m_zStream.zfree = Z_NULL;
m_zStream.opaque = Z_NULL;
m_zStream.avail_in = 0;
m_zStream.next_in = Z_NULL;
if (Z_OK != inflateInit(&m_zStream)) {
qDebug() << "RemoteTCPInputTCPHandler::RemoteTCPInputTCPHandler: inflateInit failed.";
}
}
RemoteTCPInputTCPHandler::~RemoteTCPInputTCPHandler()
{
qDebug() << "RemoteTCPInputTCPHandler::~RemoteTCPInputTCPHandler";
delete[] m_tcpBuf;
if (m_converterBuffer) {
delete[] m_converterBuffer;
}
qDebug() << "RemoteTCPInputTCPHandler::~RemoteTCPInputTCPHandler cleanup";
cleanup();
qDebug() << "RemoteTCPInputTCPHandler::~RemoteTCPInputTCPHandler done";
}
void RemoteTCPInputTCPHandler::reset()
{
QMutexLocker mutexLocker(&m_mutex);
m_inputMessageQueue.clear();
m_blacklisted = false;
}
// start() is called from DSPDeviceSourceEngine thread
// QTcpSockets need to be created on same thread they are used from, so only create it in started()
void RemoteTCPInputTCPHandler::start()
{
QMutexLocker mutexLocker(&m_mutex);
qDebug("RemoteTCPInputTCPHandler::start");
if (m_running) {
return;
}
connect(&m_inputMessageQueue, SIGNAL(messageEnqueued()), this, SLOT(handleInputMessages()));
connect(thread(), SIGNAL(started()), this, SLOT(started()));
connect(thread(), SIGNAL(finished()), this, SLOT(finished()));
m_running = true;
}
void RemoteTCPInputTCPHandler::stop()
{
qDebug("RemoteTCPInputTCPHandler::stop locking");
QMutexLocker mutexLocker(&m_mutex);
qDebug("RemoteTCPInputTCPHandler::stop");
disconnect(&m_inputMessageQueue, SIGNAL(messageEnqueued()), this, SLOT(handleInputMessages()));
}
void RemoteTCPInputTCPHandler::started()
{
QMutexLocker mutexLocker(&m_mutex);
// Don't connectToHost until we get settings
connect(&m_timer, SIGNAL(timeout()), this, SLOT(processData()));
disconnect(thread(), SIGNAL(started()), this, SLOT(started()));
}
void RemoteTCPInputTCPHandler::finished()
{
qDebug("RemoteTCPInputTCPHandler::finished");
QMutexLocker mutexLocker(&m_mutex);
m_timer.stop();
disconnect(&m_timer, SIGNAL(timeout()), this, SLOT(processData()));
//disconnectFromHost();
cleanup();
disconnect(thread(), SIGNAL(finished()), this, SLOT(finished()));
m_running = false;
qDebug("RemoteTCPInputTCPHandler::finished done");
}
void RemoteTCPInputTCPHandler::connectToHost(const QString& address, quint16 port)
{
qDebug("RemoteTCPInputTCPHandler::connectToHost: connect to %s:%d", address.toStdString().c_str(), port);
m_dataSocket = new QTcpSocket(this);
m_fillBuffer = true;
m_readMetaData = false;
connect(m_dataSocket, SIGNAL(readyRead()), this, SLOT(dataReadyRead()));
connect(m_dataSocket, SIGNAL(connected()), this, SLOT(connected()));
connect(m_dataSocket, SIGNAL(disconnected()), this, SLOT(disconnected()));
#if QT_VERSION < QT_VERSION_CHECK(5, 15, 0)
connect(m_dataSocket, QOverload<QAbstractSocket::SocketError>::of(&QAbstractSocket::error), this, &RemoteTCPInputTCPHandler::errorOccurred);
#else
connect(m_dataSocket, &QAbstractSocket::errorOccurred, this, &RemoteTCPInputTCPHandler::errorOccurred);
#endif
m_dataSocket->connectToHost(address, port);
}
/*void RemoteTCPInputTCPHandler::disconnectFromHost()
{
if (m_dataSocket)
{
qDebug() << "RemoteTCPInputTCPHandler::disconnectFromHost";
disconnect(m_dataSocket, SIGNAL(readyRead()), this, SLOT(dataReadyRead()));
disconnect(m_dataSocket, SIGNAL(connected()), this, SLOT(connected()));
disconnect(m_dataSocket, SIGNAL(disconnected()), this, SLOT(disconnected()));
#if QT_VERSION < QT_VERSION_CHECK(5, 15, 0)
disconnect(m_dataSocket, QOverload<QAbstractSocket::SocketError>::of(&QAbstractSocket::error), this, &RemoteTCPInputTCPHandler::errorOccurred);
#else
disconnect(m_dataSocket, &QAbstractSocket::errorOccurred, this, &RemoteTCPInputTCPHandler::errorOccurred);
#endif
//m_dataSocket->disconnectFromHost();
cleanup();
}
}*/
void RemoteTCPInputTCPHandler::cleanup()
{
if (m_decoder)
{
FLAC__stream_decoder_delete(m_decoder);
m_decoder = nullptr;
}
if (m_dataSocket)
{
qDebug() << "RemoteTCPInputTCPHandler::cleanup: Closing and deleting socket";
// Disconnect disconnected, so don't get called recursively
disconnect(m_dataSocket, SIGNAL(readyRead()), this, SLOT(dataReadyRead()));
disconnect(m_dataSocket, SIGNAL(connected()), this, SLOT(connected()));
disconnect(m_dataSocket, SIGNAL(disconnected()), this, SLOT(disconnected()));
#if QT_VERSION < QT_VERSION_CHECK(5, 15, 0)
disconnect(m_dataSocket, QOverload<QAbstractSocket::SocketError>::of(&QAbstractSocket::error), this, &RemoteTCPInputTCPHandler::errorOccurred);
#else
disconnect(m_dataSocket, &QAbstractSocket::errorOccurred, this, &RemoteTCPInputTCPHandler::errorOccurred);
#endif
m_dataSocket->close();
m_dataSocket->deleteLater();
m_dataSocket = nullptr;
}
}
// Clear input buffer when settings change that invalidate the data in it
// E.g. sample rate or bit depth
void RemoteTCPInputTCPHandler::clearBuffer()
{
if (m_dataSocket && m_readMetaData)
{
if (m_spyServer)
{
// Can't just flush buffer, otherwise we'll lose header sync
// Read and throw away any available data
processSpyServerData(m_dataSocket->bytesAvailable(), true);
m_fillBuffer = true;
}
else
{
m_dataSocket->flush();
if (!m_decoder) { // Can't throw away FLAC header
m_dataSocket->readAll();
m_fillBuffer = true;
}
}
}
}
void RemoteTCPInputTCPHandler::sendCommand(RemoteTCPProtocol::Command cmd, quint32 value)
{
QMutexLocker mutexLocker(&m_mutex);
quint8 request[5];
request[0] = (quint8) cmd;
RemoteTCPProtocol::encodeUInt32(&request[1], value);
if (m_dataSocket)
{
qint64 len = m_dataSocket->write((char*)request, sizeof(request));
if (len != sizeof(request)) {
qDebug() << "RemoteTCPInputTCPHandler::sendCommand: Failed to write all of request:" << len;
}
} else {
qDebug() << "RemoteTCPInputTCPHandler::sendCommand: No socket";
}
}
void RemoteTCPInputTCPHandler::sendCommandFloat(RemoteTCPProtocol::Command cmd, float value)
{
QMutexLocker mutexLocker(&m_mutex);
quint8 request[5];
request[0] = (quint8) cmd;
RemoteTCPProtocol::encodeFloat(&request[1], value);
if (m_dataSocket)
{
qint64 len = m_dataSocket->write((char*)request, sizeof(request));
if (len != sizeof(request)) {
qDebug() << "RemoteTCPInputTCPHandler::sendCommand: Failed to write all of request:" << len;
}
} else {
qDebug() << "RemoteTCPInputTCPHandler::sendCommand: No socket";
}
}
void RemoteTCPInputTCPHandler::setSampleRate(int sampleRate)
{
sendCommand(RemoteTCPProtocol::setSampleRate, sampleRate);
}
void RemoteTCPInputTCPHandler::setCenterFrequency(quint64 frequency)
{
sendCommand(RemoteTCPProtocol::setCenterFrequency, frequency); // FIXME: Can't support >4GHz
}
void RemoteTCPInputTCPHandler::setTunerAGC(bool agc)
{
sendCommand(RemoteTCPProtocol::setTunerGainMode, agc);
}
void RemoteTCPInputTCPHandler::setTunerGain(int gain)
{
sendCommand(RemoteTCPProtocol::setTunerGain, gain);
}
void RemoteTCPInputTCPHandler::setGainByIndex(int index)
{
sendCommand(RemoteTCPProtocol::setGainByIndex, index);
}
void RemoteTCPInputTCPHandler::setFreqCorrection(int correction)
{
sendCommand(RemoteTCPProtocol::setFrequencyCorrection, correction);
}
void RemoteTCPInputTCPHandler::setIFGain(quint16 stage, quint16 gain)
{
sendCommand(RemoteTCPProtocol::setTunerIFGain, (stage << 16) | gain);
}
void RemoteTCPInputTCPHandler::setAGC(bool agc)
{
sendCommand(RemoteTCPProtocol::setAGCMode, agc);
}
void RemoteTCPInputTCPHandler::setDirectSampling(bool enabled)
{
sendCommand(RemoteTCPProtocol::setDirectSampling, enabled ? 3 : 0);
}
void RemoteTCPInputTCPHandler::setDCOffsetRemoval(bool enabled)
{
sendCommand(RemoteTCPProtocol::setDCOffsetRemoval, enabled);
}
void RemoteTCPInputTCPHandler::setIQCorrection(bool enabled)
{
sendCommand(RemoteTCPProtocol::setIQCorrection, enabled);
}
void RemoteTCPInputTCPHandler::setBiasTee(bool enabled)
{
sendCommand(RemoteTCPProtocol::setBiasTee, enabled);
}
void RemoteTCPInputTCPHandler::setBandwidth(int bandwidth)
{
sendCommand(RemoteTCPProtocol::setTunerBandwidth, bandwidth);
}
void RemoteTCPInputTCPHandler::setDecimation(int dec)
{
sendCommand(RemoteTCPProtocol::setDecimation, dec);
}
void RemoteTCPInputTCPHandler::setChannelSampleRate(int sampleRate)
{
sendCommand(RemoteTCPProtocol::setChannelSampleRate, sampleRate);
}
void RemoteTCPInputTCPHandler::setChannelFreqOffset(int offset)
{
sendCommand(RemoteTCPProtocol::setChannelFreqOffset, offset);
}
void RemoteTCPInputTCPHandler::setChannelGain(int gain)
{
sendCommand(RemoteTCPProtocol::setChannelGain, gain);
}
void RemoteTCPInputTCPHandler::setSampleBitDepth(int sampleBits)
{
sendCommand(RemoteTCPProtocol::setSampleBitDepth, sampleBits);
}
void RemoteTCPInputTCPHandler::setSquelchEnabled(bool enabled)
{
sendCommand(RemoteTCPProtocol::setIQSquelchEnabled, (quint32) enabled);
}
void RemoteTCPInputTCPHandler::setSquelch(float squelch)
{
sendCommandFloat(RemoteTCPProtocol::setIQSquelch, squelch);
}
void RemoteTCPInputTCPHandler::setSquelchGate(float squelchGate)
{
sendCommandFloat(RemoteTCPProtocol::setIQSquelchGate, squelchGate);
}
void RemoteTCPInputTCPHandler::sendMessage(const QString& callsign, const QString& text, bool broadcast)
{
QMutexLocker mutexLocker(&m_mutex);
if (m_dataSocket)
{
qint64 len;
char cmd[1+4+1];
QByteArray callsignBytes = callsign.toUtf8();
QByteArray textBytes = text.toUtf8();
QByteArray bytes;
bytes.append(callsignBytes);
bytes.append('\0');
bytes.append(textBytes);
bytes.append('\0');
cmd[0] = (char) RemoteTCPProtocol::sendMessage;
RemoteTCPProtocol::encodeUInt32((quint8*) &cmd[1], bytes.size() + 1);
cmd[5] = (char) broadcast;
len = m_dataSocket->write(&cmd[0], sizeof(cmd));
if (len != sizeof(cmd)) {
qDebug() << "RemoteTCPInputTCPHandler::set: Failed to write all of message header:" << len;
}
len = m_dataSocket->write(bytes.data(), bytes.size());
if (len != bytes.size()) {
qDebug() << "RemoteTCPInputTCPHandler::set: Failed to write all of message:" << len;
}
m_dataSocket->flush();
qDebug() << "sendMessage" << text;
} else {
qDebug() << "RemoteTCPInputTCPHandler::sendMessage: No socket";
}
}
void RemoteTCPInputTCPHandler::spyServerConnect()
{
QMutexLocker mutexLocker(&m_mutex);
quint8 request[8+4+9];
SpyServerProtocol::encodeUInt32(&request[0], 0);
SpyServerProtocol::encodeUInt32(&request[4], 4+9);
SpyServerProtocol::encodeUInt32(&request[8], SpyServerProtocol::ProtocolID);
memcpy(&request[8+4], "SDRangel", 9);
if (m_dataSocket)
{
m_dataSocket->write((char*)request, sizeof(request));
m_dataSocket->flush();
}
}
void RemoteTCPInputTCPHandler::spyServerSet(int setting, int value)
{
QMutexLocker mutexLocker(&m_mutex);
quint8 request[8+8];
SpyServerProtocol::encodeUInt32(&request[0], 2);
SpyServerProtocol::encodeUInt32(&request[4], 8);
SpyServerProtocol::encodeUInt32(&request[8], setting);
SpyServerProtocol::encodeUInt32(&request[12], value);
if (m_dataSocket)
{
m_dataSocket->write((char*)request, sizeof(request));
m_dataSocket->flush();
}
}
void RemoteTCPInputTCPHandler::spyServerSetIQFormat(int sampleBits)
{
quint32 format;
if (sampleBits == 8) {
format = 1;
} else if (sampleBits == 16) {
format = 2;
} else if (sampleBits == 24) {
format = 3;
} else if (sampleBits == 32) {
format = 4; // This is float
} else {
qDebug() << "RemoteTCPInputTCPHandler::spyServerSetIQFormat: Unsupported value" << sampleBits;
format = 1;
}
spyServerSet(SpyServerProtocol::setIQFormat, format);
}
void RemoteTCPInputTCPHandler::spyServerSetStreamIQ()
{
spyServerSetIQFormat(m_settings.m_sampleBits);
spyServerSet(SpyServerProtocol::setStreamingMode, 1); // Stream IQ only
spyServerSet(SpyServerProtocol::setStreamingEnabled, 1); // Enable streaming
}
void RemoteTCPInputTCPHandler::applySettings(const RemoteTCPInputSettings& settings, const QList<QString>& settingsKeys, bool force)
{
qDebug() << "RemoteTCPInputTCPHandler::applySettings: "
<< "force: " << force
<< settings.getDebugString(settingsKeys, force);
QMutexLocker mutexLocker(&m_mutex);
if (m_spyServer)
{
if (settingsKeys.contains("centerFrequency") || force) {
spyServerSet(SpyServerProtocol::setCenterFrequency, settings.m_centerFrequency);
}
if ((settings.m_channelSampleRate != m_settings.m_channelSampleRate) || force)
{
// Resize FIFO to give us 1 second
if ((settingsKeys.contains("channelSampleRate") || force) && (settings.m_channelSampleRate > (qint32)m_sampleFifo->size()))
{
qDebug() << "RemoteTCPInputTCPHandler::applySettings: Resizing sample FIFO from " << m_sampleFifo->size() << "to" << settings.m_channelSampleRate;
m_sampleFifo->setSize(settings.m_channelSampleRate);
delete[] m_tcpBuf;
m_tcpBuf = new char[m_sampleFifo->size()*2*4];
m_fillBuffer = true; // So we reprime FIFO
}
// Protocol only seems to allow changing decimation
//spyServerSet(SpyServerProtocol::???, settings.m_channelSampleRate);
clearBuffer();
}
if (settingsKeys.contains("sampleBits") || force)
{
spyServerSetIQFormat(settings.m_sampleBits);
clearBuffer();
}
if (settingsKeys.contains("log2Decim") || force)
{
spyServerSet(SpyServerProtocol::setIQDecimation, settings.m_log2Decim);
clearBuffer();
}
if (settingsKeys.contains("gain[0]") || force)
{
spyServerSet(SpyServerProtocol::setGain, settings.m_gain[0] / 10); // Convert 10ths dB to index
}
}
else
{
if (settingsKeys.contains("centerFrequency") || force) {
setCenterFrequency(settings.m_centerFrequency);
}
if (settingsKeys.contains("loPpmCorrection") || force) {
setFreqCorrection(settings.m_loPpmCorrection);
}
if (settingsKeys.contains("dcBlock") || force) {
if (m_sdra) {
setDCOffsetRemoval(settings.m_dcBlock);
}
}
if (settingsKeys.contains("iqCorrection") || force) {
if (m_sdra) {
setIQCorrection(settings.m_iqCorrection);
}
}
if (settingsKeys.contains("biasTee") || force) {
setBiasTee(settings.m_biasTee);
}
if (settingsKeys.contains("directSampling") || force) {
setDirectSampling(settings.m_directSampling);
}
if (settingsKeys.contains("log2Decim") || force) {
if (m_sdra) {
setDecimation(settings.m_log2Decim);
}
}
if (settingsKeys.contains("devSampleRate") || force) {
setSampleRate(settings.m_devSampleRate);
}
if (settingsKeys.contains("agc") || force) {
setAGC(settings.m_agc);
}
if (force) {
setTunerAGC(1); // The SDRangel RTLSDR driver always has tuner gain as manual
}
if (settingsKeys.contains("gain[0]") || force) {
setTunerGain(settings.m_gain[0]);
}
for (int i = 1; i < 3; i++)
{
if (settingsKeys.contains(QString("gain[%1]").arg(i)) || force) {
setIFGain(i, settings.m_gain[i]);
}
}
if (settingsKeys.contains("rfBW") || force) {
setBandwidth(settings.m_rfBW);
}
if (settingsKeys.contains("inputFrequencyOffset") || force) {
if (m_sdra) {
setChannelFreqOffset(settings.m_inputFrequencyOffset);
}
}
if (settingsKeys.contains("channelGain") || force) {
if (m_sdra) {
setChannelGain(settings.m_channelGain);
}
}
if ((settings.m_channelSampleRate != m_settings.m_channelSampleRate) || force)
{
// Resize FIFO to give us 1 second
if ((settingsKeys.contains("channelSampleRate") || force) && (settings.m_channelSampleRate > (qint32)m_sampleFifo->size()))
{
qDebug() << "RemoteTCPInputTCPHandler::applySettings: Resizing sample FIFO from " << m_sampleFifo->size() << "to" << settings.m_channelSampleRate;
m_sampleFifo->setSize(settings.m_channelSampleRate);
delete[] m_tcpBuf;
m_tcpBuf = new char[m_sampleFifo->size()*2*4];
m_fillBuffer = true; // So we reprime FIFO
}
if (m_sdra) {
setChannelSampleRate(settings.m_channelSampleRate);
}
clearBuffer();
}
if (settingsKeys.contains("sampleBits") || force)
{
if (m_sdra) {
setSampleBitDepth(settings.m_sampleBits);
}
clearBuffer();
}
if (settingsKeys.contains("squelchEnabled") || force)
{
if (m_sdra) {
setSquelchEnabled(settings.m_squelchEnabled);
}
}
if (settingsKeys.contains("squelch") || force)
{
if (m_sdra) {
setSquelch(settings.m_squelch);
}
}
if (settingsKeys.contains("squelchGate") || force)
{
if (m_sdra) {
setSquelchGate(settings.m_squelchGate);
}
}
}
if (m_dataSocket) {
m_dataSocket->flush(); // Apparently needed for WebAssembly with proxy
}
// Don't use force, as disconnect can cause rtl_tcp to quit
if (settingsKeys.contains("dataAddress")
|| settingsKeys.contains("dataPort")
|| (m_dataSocket == nullptr) && !m_blacklisted)
{
//disconnectFromHost();
cleanup();
connectToHost(settings.m_dataAddress, settings.m_dataPort);
}
if (force) {
m_settings = settings;
} else {
m_settings.applySettings(settingsKeys, settings);
}
}
static FLAC__StreamDecoderReadStatus flacReadCallback(const FLAC__StreamDecoder *decoder, FLAC__byte buffer[], size_t *bytes, void *clientData)
{
RemoteTCPInputTCPHandler *handler = (RemoteTCPInputTCPHandler *) clientData;
return handler->flacRead(decoder, buffer, bytes);
}
static FLAC__StreamDecoderWriteStatus flacWriteCallback(const FLAC__StreamDecoder *decoder, const FLAC__Frame *frame, const FLAC__int32 *const buffer[], void *clientData)
{
RemoteTCPInputTCPHandler *handler = (RemoteTCPInputTCPHandler *) clientData;
return handler->flacWrite(decoder, frame, buffer);
}
static void flacErrorCallback(const FLAC__StreamDecoder *decoder, FLAC__StreamDecoderErrorStatus status, void *clientData)
{
RemoteTCPInputTCPHandler *handler = (RemoteTCPInputTCPHandler *) clientData;
return handler->flacError(decoder, status);
}
/*FLAC__StreamDecoderReadStatus RemoteTCPInputTCPHandler::flacRead(const FLAC__StreamDecoder *decoder, FLAC__byte buffer[], size_t *bytes)
{
if (m_dataSocket)
{
qint64 bytesRequested = *bytes;
qint64 bytesRead = std::min(bytesRequested, m_compressedData.size());
//bytesRead = m_dataSocket->read((char *) buffer, bytesRequested);
memcpy(buffer, m_compressedData.constData(), bytesRead);
qDebug() << "flacRead" << bytesRequested << bytesRead;
if (bytesRead != -1)
{
*bytes = (size_t) bytesRead;
return FLAC__STREAM_DECODER_READ_STATUS_CONTINUE;
}
else
{
return FLAC__STREAM_DECODER_READ_STATUS_ABORT;
}
}
else
{
return FLAC__STREAM_DECODER_READ_STATUS_ABORT;
}
}*/
FLAC__StreamDecoderReadStatus RemoteTCPInputTCPHandler::flacRead(const FLAC__StreamDecoder *decoder, FLAC__byte buffer[], size_t *bytes)
{
qsizetype bytesRequested = *bytes;
qsizetype bytesRead = std::min(bytesRequested, (qsizetype) m_compressedData.size());
memcpy(buffer, m_compressedData.constData(), bytesRead);
m_compressedData.remove(0, bytesRead);
//qDebug() << "RemoteTCPInputTCPHandler::flacRead bytesRequested" << bytesRequested << "bytesRead" << bytesRead;
if (bytesRead == 0)
{
qDebug() << "RemoteTCPInputTCPHandler::flacRead: Decoder will hang if we can't return data";
abort();
}
*bytes = (size_t) bytesRead;
return FLAC__STREAM_DECODER_READ_STATUS_CONTINUE;
}
FIFO::FIFO(qsizetype elements)
{
m_data.resize(elements);
clear();
}
qsizetype FIFO::write(quint8 *data, qsizetype elements)
{
qsizetype writeCount = std::min(elements, m_data.size() - m_fill);
qsizetype remaining = m_data.size() - m_writePtr;
qsizetype len2 = writeCount - remaining;
//qDebug() << "write" << write << remaining << len2;
if (len2 < 0)
{
std::memcpy(&m_data.data()[m_writePtr], data, writeCount);
m_writePtr += writeCount;
}
else if (len2 == 0)
{
std::memcpy(&m_data.data()[m_writePtr], data, writeCount);
m_writePtr = 0;
}
else
{
std::memcpy(&m_data.data()[m_writePtr], data, remaining);
std::memcpy(&m_data.data()[0], &data[remaining], len2);
m_writePtr = len2;
}
m_fill += writeCount;
return writeCount;
}
qsizetype FIFO::read(quint8 *data, qsizetype elements)
{
qsizetype readCount = std::min(elements, m_fill);
qsizetype remaining = m_data.size() - m_readPtr;
qsizetype len2 = readCount - remaining;
// qDebug() << "read" << read << remaining << len2;
if (len2 < 0)
{
std::memcpy(data, &m_data.data()[m_readPtr], readCount);
m_readPtr += readCount;
}
else if (len2 == 0)
{
std::memcpy(data, &m_data.data()[m_readPtr], readCount);
m_readPtr = 0;
}
else
{
std::memcpy(&data[0], &m_data.data()[m_readPtr], remaining);
std::memcpy(&data[remaining], &m_data[0], len2);
m_readPtr = len2;
}
m_fill -= readCount;
return readCount;
}
qsizetype FIFO::readPtr(quint8 **data, qsizetype elements)
{
*data = (quint8 *) &m_data.data()[m_readPtr];
return std::min(elements, m_data.size() - m_readPtr);
}
void FIFO::read(qsizetype elements)
{
m_readPtr = (m_readPtr + elements) % m_data.size();
m_fill -= elements;
if (m_fill < 0)
{
qDebug() << "FIFO::read: Underrun";
m_fill = 0;
}
}
void FIFO::resize(qsizetype elements)
{
m_data.resize(elements);
m_data.squeeze();
}
void FIFO::clear()
{
m_writePtr = 0;
m_readPtr = 0;
m_fill = 0;
}
void RemoteTCPInputTCPHandler::calcPower(const Sample *iq, int nbSamples)
{
for (int i = 0; i < nbSamples; i++)
{
Real re = iq[i].real();// SDR_RX_SCALED;
Real im = iq[i].imag();// SDR_RX_SCALED;
Real magsq = (re*re + im*im) / (SDR_RX_SCALED*SDR_RX_SCALED);
m_movingAverage(magsq);
m_magsq = m_movingAverage.asDouble();
m_magsqSum += magsq;
m_magsqPeak = std::max<double>(magsq, m_magsqPeak);
m_magsqCount++;
}
}
FLAC__StreamDecoderWriteStatus RemoteTCPInputTCPHandler::flacWrite(const FLAC__StreamDecoder *decoder, const FLAC__Frame *frame, const FLAC__int32 *const buffer[])
{
m_uncompressedFrames++;
int nbSamples = frame->header.blocksize;
//qDebug() << "RemoteTCPInputTCPHandler::flacWrite m_uncompressedFrames" << m_uncompressedFrames << "nbSamples" << nbSamples;
if (nbSamples > (int) m_converterBufferNbSamples)
{
if (m_converterBuffer) {
delete[] m_converterBuffer;
}
m_converterBuffer = new int32_t[nbSamples*2];
}
// Convert and interleave samples and output to FIFO
if ((frame->header.bits_per_sample == 8) && (SDR_RX_SAMP_SZ == 24) && (frame->header.channels == 2))
{
qint32 *out = (qint32 *)m_converterBuffer;
const qint32 *inI = buffer[0];
const qint32 *inQ = buffer[1];
for (int i = 0; i < nbSamples; i++)
{
*out++ = *inI++ << 16;
*out++ = *inQ++ << 16;
}
m_uncompressedData.write(reinterpret_cast<quint8*>(m_converterBuffer), nbSamples*sizeof(Sample));
}
else if ((frame->header.bits_per_sample == 16) && (SDR_RX_SAMP_SZ == 24) && (frame->header.channels == 2))
{
qint32 *out = (qint32 *)m_converterBuffer;
const qint32 *inI = buffer[0];
const qint32 *inQ = buffer[1];
for (int i = 0; i < nbSamples; i++)
{
*out++ = *inI++ << 8;
*out++ = *inQ++ << 8;
}
m_uncompressedData.write(reinterpret_cast<quint8*>(m_converterBuffer), nbSamples*sizeof(Sample));
}
else if ((frame->header.bits_per_sample == 24) && (SDR_RX_SAMP_SZ == 24) && (frame->header.channels == 2))
{
qint32 *out = (qint32 *)m_converterBuffer;
const qint32 *inI = buffer[0];
const qint32 *inQ = buffer[1];
for (int i = 0; i < nbSamples; i++)
{
*out++ = *inI++;
*out++ = *inQ++;
}
m_uncompressedData.write(reinterpret_cast<quint8*>(m_converterBuffer), nbSamples*sizeof(Sample));
}
else if ((frame->header.bits_per_sample == 32) && (SDR_RX_SAMP_SZ == 24) && (frame->header.channels == 2))
{
qint32 *out = (qint32 *)m_converterBuffer;
const qint32 *inI = buffer[0];
const qint32 *inQ = buffer[1];
for (int i = 0; i < nbSamples; i++)
{
*out++ = *inI++;
*out++ = *inQ++;
}
m_uncompressedData.write(reinterpret_cast<quint8*>(m_converterBuffer), nbSamples*sizeof(Sample));
}
else
{
qDebug() << "RemoteTCPInputTCPHandler::flacWrite: Unsupported format";
}
return FLAC__STREAM_DECODER_WRITE_STATUS_CONTINUE;
}
// Convert from zlib uncompressed network format to Samples, to uncompressed data FIFO
void RemoteTCPInputTCPHandler::processDecompressedZlibData(const char *inBuf, int nbSamples)
{
// Ensure conversion buffer is large enough - FIXME: Don't use this buffer - just write in to FIFO
if (nbSamples > (int) m_converterBufferNbSamples)
{
if (m_converterBuffer) {
delete[] m_converterBuffer;
}
m_converterBuffer = new int32_t[nbSamples*2];
}
// Convert from network format to Sample
if ((m_settings.m_sampleBits == 8) && (SDR_RX_SAMP_SZ == 16))
{
const quint8 *in = (const quint8 *) inBuf;
qint16 *out = (qint16 *) m_converterBuffer;
for (int is = 0; is < nbSamples*2; is++) {
out[is] = (((qint16)in[is]) - 128) << 8;
}
}
else if ((m_settings.m_sampleBits == 8) && (SDR_RX_SAMP_SZ == 24))
{
const quint8 *in = (const quint8 *) inBuf;
qint32 *out = (qint32 *) m_converterBuffer;
for (int is = 0; is < nbSamples*2; is++) {
out[is] = (((qint32)in[is]) - 128) << 16;
}
}
else if ((m_settings.m_sampleBits == 16) && (SDR_RX_SAMP_SZ == 16))
{
const qint16 *in = (const qint16 *) inBuf;
qint32 *out = (qint32 *) m_converterBuffer;
for (int is = 0; is < nbSamples*2; is++) {
out[is] = in[is];
}
}
else if ((m_settings.m_sampleBits == 16) && (SDR_RX_SAMP_SZ == 24))
{
const qint16 *in = (const qint16 *) inBuf;
qint32 *out = (qint32 *) m_converterBuffer;
for (int is = 0; is < nbSamples*2; is++) {
out[is] = in[is] << 8;
}
}
else if ((m_settings.m_sampleBits == 24) && (SDR_RX_SAMP_SZ == 24))
{
const quint8 *in = (const quint8 *) inBuf;
qint32 *out = (qint32 *) m_converterBuffer;
for (int is = 0; is < nbSamples*2; is++) {
out[is] = (((in[3*is+2] << 16) | (in[3*is+1] << 8) | in[3*is]) << 8) >> 8;
}
}
else if ((m_settings.m_sampleBits == 24) && (SDR_RX_SAMP_SZ == 16))
{
const quint8 *in = (const quint8 *) inBuf;
qint16 *out = (qint16 *) m_converterBuffer;
for (int is = 0; is < nbSamples*2; is++) {
out[is] = (in[3*is+2] << 8) | in[3*is+1];
}
}
else if ((m_settings.m_sampleBits == 32) && (SDR_RX_SAMP_SZ == 16))
{
const qint32 *in = (const qint32 *) inBuf;
qint16 *out = (qint16 *) m_converterBuffer;
for (int is = 0; is < nbSamples*2; is++) {
out[is] = in[is] >> 8;
}
}
else if ((m_settings.m_sampleBits == 32) && (SDR_RX_SAMP_SZ == 24))
{
const qint32 *in = (const qint32 *) inBuf;
qint32 *out = (qint32 *) m_converterBuffer;
for (int is = 0; is < nbSamples*2; is++) {
out[is] = in[is];
}
}
else // invalid size
{
qWarning("RemoteTCPInputTCPHandler::convert: unexpected sample size in stream: %d bits", (int) m_settings.m_sampleBits);
}
m_uncompressedData.write(reinterpret_cast<quint8*>(m_converterBuffer), nbSamples*sizeof(Sample));
}
void RemoteTCPInputTCPHandler::flacError(const FLAC__StreamDecoder *decoder, FLAC__StreamDecoderErrorStatus status)
{
qDebug() << "RemoteTCPInputTCPHandler::flacError: Error:" << status;
}
void RemoteTCPInputTCPHandler::connected()
{
QMutexLocker mutexLocker(&m_mutex);
qDebug() << "RemoteTCPInputTCPHandler::connected";
if (m_messageQueueToGUI)
{
MsgReportConnection *msg = MsgReportConnection::create(true);
m_messageQueueToGUI->push(msg);
}
m_spyServer = m_settings.m_protocol == "Spy Server";
m_state = HEADER;
m_sdra = false;
m_remoteControl = true;
m_iqOnly = true;
if (m_spyServer) {
spyServerConnect();
}
// Start calls to processData
m_timer.start();
/*if (m_dataSocket->bytesAvailable()) {
qDebug() << "Data is already available";
dataReadyRead();
} else {
qDebug() << "No data available";
}*/
}
void RemoteTCPInputTCPHandler::reconnect()
{
QMutexLocker mutexLocker(&m_mutex);
if (!m_dataSocket) {
connectToHost(m_settings.m_dataAddress, m_settings.m_dataPort);
}
}
void RemoteTCPInputTCPHandler::disconnected()
{
QMutexLocker mutexLocker(&m_mutex);
qDebug() << "RemoteTCPInputTCPHandler::disconnected";
cleanup();
if (m_messageQueueToGUI)
{
MsgReportConnection *msg = MsgReportConnection::create(false);
m_messageQueueToGUI->push(msg);
}
if (!m_blacklisted)
{
// Try to reconnect immediately - it may just be server settings changed
m_reconnectTimer.start(1);
}
else
{
// Stop device so we don't try to reconnect
RemoteTCPInput::MsgStartStop *msg = RemoteTCPInput::MsgStartStop::create(false);
m_messageQueueToInput->push(msg);
}
}
void RemoteTCPInputTCPHandler::errorOccurred(QAbstractSocket::SocketError socketError)
{
QMutexLocker mutexLocker(&m_mutex);
qDebug() << "RemoteTCPInputTCPHandler::errorOccurred: " << socketError;
// For RemoteHostClosedError, disconnected() will be called afterwards, so don't try to reconnect here
// We try to reconnect here, for errors such as ConnectionRefusedError
if (socketError != QAbstractSocket::RemoteHostClosedError)
{
cleanup();
if (m_messageQueueToGUI)
{
MsgReportConnection *msg = MsgReportConnection::create(false);
m_messageQueueToGUI->push(msg);
}
// Try to reconnect
m_reconnectTimer.start(500);
}
}
void RemoteTCPInputTCPHandler::dataReadyRead()
{
QMutexLocker mutexLocker(&m_mutex);
if (!m_readMetaData && !m_spyServer) {
processMetaData();
} else if (!m_readMetaData && m_spyServer) {
processSpyServerMetaData();
}
if (m_readMetaData && !m_iqOnly) {
processCommands();
}
}
void RemoteTCPInputTCPHandler::processMetaData()
{
quint8 metaData[RemoteTCPProtocol::m_sdraMetaDataSize];
if (m_dataSocket->bytesAvailable() >= (qint64)sizeof(metaData))
{
qint64 bytesRead = m_dataSocket->read((char *)&metaData[0], 4);
if (bytesRead == 4)
{
// Read first 4 bytes which indicate which protocol is in use
// RTL0 or SDRA
char protochars[5];
memcpy(protochars, metaData, 4);
protochars[4] = '\0';
QString protocol(protochars);
if (protocol == "RTL0")
{
m_sdra = false;
m_spyServer = false;
bytesRead = m_dataSocket->read((char *)&metaData[4], RemoteTCPProtocol::m_rtl0MetaDataSize-4);
m_device = (RemoteTCPProtocol::Device)RemoteTCPProtocol::extractUInt32(&metaData[4]);
if (m_messageQueueToGUI) {
m_messageQueueToGUI->push(MsgReportRemoteDevice::create(m_device, protocol, false, true));
}
if (m_settings.m_sampleBits != 8)
{
RemoteTCPInputSettings& settings = m_settings;
settings.m_sampleBits = 8;
sendSettings(settings, {"sampleBits"});
}
}
else if (protocol == "SDRA")
{
m_sdra = true;
m_spyServer = false;
bytesRead = m_dataSocket->read((char *)&metaData[4], RemoteTCPProtocol::m_sdraMetaDataSize-4);
m_device = (RemoteTCPProtocol::Device)RemoteTCPProtocol::extractUInt32(&metaData[4]);
quint32 protocolRevision = RemoteTCPProtocol::extractUInt32(&metaData[60]);
quint32 flags = RemoteTCPProtocol::extractUInt32(&metaData[20]);
if (protocolRevision >= 1)
{
m_iqOnly = !(bool) ((flags >> 7) & 1);
m_remoteControl = (bool) ((flags >> 6) & 1);
}
else
{
m_iqOnly = true;
m_remoteControl = true;
}
if (m_messageQueueToGUI) {
m_messageQueueToGUI->push(MsgReportRemoteDevice::create(m_device, protocol, m_iqOnly, m_remoteControl));
}
if (!m_settings.m_overrideRemoteSettings || !m_remoteControl)
{
// Update local settings to match remote
RemoteTCPInputSettings& settings = m_settings;
QList<QString> settingsKeys;
settings.m_centerFrequency = RemoteTCPProtocol::extractUInt64(&metaData[8]);
settingsKeys.append("centerFrequency");
settings.m_loPpmCorrection = RemoteTCPProtocol::extractUInt32(&metaData[16]);
settingsKeys.append("loPpmCorrection");
settings.m_biasTee = flags & 1;
settingsKeys.append("biasTee");
settings.m_directSampling = (flags >> 1) & 1;
settingsKeys.append("directSampling");
settings.m_agc = (flags >> 2) & 1;
settingsKeys.append("agc");
settings.m_dcBlock = (flags >> 3) & 1;
settingsKeys.append("dcBlock");
settings.m_iqCorrection = (flags >> 4) & 1;
settingsKeys.append("iqCorrection");
settings.m_devSampleRate = RemoteTCPProtocol::extractUInt32(&metaData[24]);
settingsKeys.append("devSampleRate");
settings.m_log2Decim = RemoteTCPProtocol::extractUInt32(&metaData[28]);
settingsKeys.append("log2Decim");
settings.m_gain[0] = RemoteTCPProtocol::extractInt16(&metaData[32]);
settings.m_gain[1] = RemoteTCPProtocol::extractInt16(&metaData[34]);
settings.m_gain[2] = RemoteTCPProtocol::extractInt16(&metaData[36]);
settingsKeys.append("gain[0]");
settingsKeys.append("gain[1]");
settingsKeys.append("gain[2]");
settings.m_rfBW = RemoteTCPProtocol::extractUInt32(&metaData[40]);
settingsKeys.append("rfBW");
settings.m_inputFrequencyOffset = RemoteTCPProtocol::extractUInt32(&metaData[44]);
settingsKeys.append("inputFrequencyOffset");
settings.m_channelGain = RemoteTCPProtocol::extractUInt32(&metaData[48]);
settingsKeys.append("channelGain");
settings.m_channelSampleRate = RemoteTCPProtocol::extractUInt32(&metaData[52]);
settingsKeys.append("channelSampleRate");
settings.m_sampleBits = RemoteTCPProtocol::extractUInt32(&metaData[56]);
settingsKeys.append("sampleBits");
if (settings.m_channelSampleRate != (settings.m_devSampleRate >> settings.m_log2Decim))
{
settings.m_channelDecimation = true;
settingsKeys.append("channelDecimation");
}
if (protocolRevision >= 1)
{
settings.m_squelchEnabled = (flags >> 5) & 1;
settingsKeys.append("squelchEnabled");
settings.m_squelch = RemoteTCPProtocol::extractFloat(&metaData[64]);
settingsKeys.append("squelch");
settings.m_squelchGate = RemoteTCPProtocol::extractFloat(&metaData[68]);
settingsKeys.append("squelchGate");
}
sendSettings(settings, settingsKeys);
}
if (!m_iqOnly)
{
qDebug() << "RemoteTCPInputTCPHandler: Compression enabled";
// Create FLAC decoder for IQ decompression
m_decoder = FLAC__stream_decoder_new();
m_remainingSamples = 0;
m_compressedFrames = 0;
m_uncompressedFrames = 0;
int bytesPerSecond = m_settings.m_channelSampleRate * 2 * sizeof(Sample);
int fifoSize = 2 * m_settings.m_preFill * bytesPerSecond;
m_uncompressedData.resize(fifoSize);
m_uncompressedData.clear();
if (m_decoder)
{
FLAC__StreamDecoderInitStatus initStatus;
initStatus = FLAC__stream_decoder_init_stream(m_decoder, flacReadCallback, nullptr, nullptr, nullptr, nullptr, flacWriteCallback, nullptr, flacErrorCallback, this);
if (initStatus != FLAC__STREAM_DECODER_INIT_STATUS_OK)
{
qDebug() << "RemoteTCPInputTCPHandler: Failed to init FLAC decoder: " << initStatus;
}
}
else
{
qDebug() << "RemoteTCPInputTCPHandler: Failed to allocate FLAC decoder";
}
}
else
{
qDebug() << "RemoteTCPInputTCPHandler: Compression disabled";
}
}
else
{
qDebug() << "RemoteTCPInputTCPHandler::dataReadyRead: Unknown protocol: " << protocol;
m_dataSocket->close();
}
if (m_settings.m_overrideRemoteSettings && m_remoteControl)
{
// Force settings to be sent to remote device (this needs to be after m_sdra is determined above)
applySettings(m_settings, QList<QString>(), true);
}
}
m_readMetaData = true;
}
}
void RemoteTCPInputTCPHandler::processSpyServerMetaData()
{
bool done = false;
while (!done)
{
if (m_state == HEADER)
{
if (m_dataSocket->bytesAvailable() >= (qint64)sizeof(SpyServerProtocol::Header))
{
qint64 bytesRead = m_dataSocket->read((char *)&m_spyServerHeader, sizeof(SpyServerProtocol::Header));
if (bytesRead == sizeof(SpyServerProtocol::Header)) {
m_state = DATA;
} else {
qDebug() << "RemoteTCPInputTCPHandler::processSpyServerMetaData: Failed to read:" << bytesRead << "/" << sizeof(SpyServerProtocol::Header);
}
}
else
{
done = true;
}
}
else if (m_state == DATA)
{
if (m_dataSocket->bytesAvailable() >= m_spyServerHeader.m_size)
{
qint64 bytesRead = m_dataSocket->read(&m_tcpBuf[0], m_spyServerHeader.m_size);
if (bytesRead == m_spyServerHeader.m_size)
{
if (m_spyServerHeader.m_message == SpyServerProtocol::DeviceMessage)
{
processSpyServerDevice((SpyServerProtocol::Device *) &m_tcpBuf[0]);
m_state = HEADER;
}
else if (m_spyServerHeader.m_message == SpyServerProtocol::StateMessage)
{
// This call can result in applySettings() calling clearBuffer() then processSpyServerData()
processSpyServerState((SpyServerProtocol::State *) &m_tcpBuf[0], true);
spyServerSetStreamIQ();
m_state = HEADER;
m_readMetaData = true;
done = true;
}
else
{
qDebug() << "RemoteTCPInputTCPHandler::processSpyServerMetaData: Unexpected message type" << m_spyServerHeader.m_message;
m_state = HEADER;
}
}
else
{
qDebug() << "RemoteTCPInputTCPHandler::processSpyServerMetaData: Failed to read:" << bytesRead << "/" << m_spyServerHeader.m_size;
}
}
else
{
done = true;
}
}
}
}
void RemoteTCPInputTCPHandler::processSpyServerDevice(const SpyServerProtocol::Device* ssDevice)
{
qDebug() << "RemoteTCPInputTCPHandler::processSpyServerDevice:"
<< "device:" << ssDevice->m_device
<< "serial:" << ssDevice->m_serial
<< "sampleRate:" << ssDevice->m_sampleRate
<< "decimationStages:" << ssDevice->m_decimationStages
<< "maxGainIndex:" << ssDevice->m_maxGainIndex
<< "minFrequency:" << ssDevice->m_minFrequency
<< "maxFrequency:" << ssDevice->m_maxFrequency
<< "sampleBits:" << ssDevice->m_sampleBits
<< "minDecimation:" << ssDevice->m_minDecimation;
switch (ssDevice->m_device)
{
case 1:
m_device = RemoteTCPProtocol::AIRSPY;
break;
case 2:
m_device = RemoteTCPProtocol::AIRSPY_HF;
break;
case 3:
m_device = ssDevice->m_maxGainIndex == 14
? RemoteTCPProtocol::RTLSDR_E4000
: RemoteTCPProtocol::RTLSDR_R820T;
break;
default:
m_device = RemoteTCPProtocol::UNKNOWN;
break;
}
if (m_messageQueueToGUI) {
m_messageQueueToGUI->push(MsgReportRemoteDevice::create(m_device, "Spy Server", false, true, ssDevice->m_maxGainIndex));
}
RemoteTCPInputSettings& settings = m_settings;
QList<QString> settingsKeys{};
// We can't change sample rate, so always have to update local setting to match
m_settings.m_devSampleRate = settings.m_devSampleRate = ssDevice->m_sampleRate;
settingsKeys.append("devSampleRate");
// Make sure decimation setting is at least the minimum
if (!m_settings.m_overrideRemoteSettings || (settings.m_log2Decim < (int) ssDevice->m_minDecimation))
{
m_settings.m_log2Decim = settings.m_log2Decim = ssDevice->m_minDecimation;
settingsKeys.append("log2Decim");
}
sendSettings(settings, settingsKeys);
}
void RemoteTCPInputTCPHandler::processSpyServerState(const SpyServerProtocol::State* ssState, bool initial)
{
qDebug() << "RemoteTCPInputTCPHandler::processSpyServerState: "
<< "initial:" << initial
<< "controllable:" << ssState->m_controllable
<< "gain:" << ssState->m_gain
<< "deviceCenterFrequency:" << ssState->m_deviceCenterFrequency
<< "iqCenterFrequency:" << ssState->m_iqCenterFrequency;
if (initial && ssState->m_controllable && m_settings.m_overrideRemoteSettings)
{
// Force client settings to be sent to server
applySettings(m_settings, QList<QString>(), true);
}
else
{
// Update client settings with that from server
RemoteTCPInputSettings& settings = m_settings;
QList<QString> settingsKeys;
if (m_settings.m_centerFrequency != ssState->m_iqCenterFrequency)
{
settings.m_centerFrequency = ssState->m_iqCenterFrequency;
settingsKeys.append("centerFrequency");
}
if (m_settings.m_gain[0] != (qint32) ssState->m_gain)
{
settings.m_gain[0] = ssState->m_gain;
settingsKeys.append("gain[0]");
}
if (settingsKeys.size() > 0)
{
sendSettings(settings, settingsKeys);
}
}
}
void RemoteTCPInputTCPHandler::processSpyServerData(int requiredBytes, bool clear)
{
if (!m_readMetaData) {
return;
}
bool done = false;
while (!done)
{
if (m_state == HEADER)
{
if (m_dataSocket->bytesAvailable() >= (qint64) sizeof(SpyServerProtocol::Header))
{
qint64 bytesRead = m_dataSocket->read((char *) &m_spyServerHeader, sizeof(SpyServerProtocol::Header));
if (bytesRead == sizeof(SpyServerProtocol::Header)) {
m_state = DATA;
} else {
qDebug() << "RemoteTCPInputTCPHandler::processSpyServerData: Failed to read:" << bytesRead << "/" << sizeof(SpyServerProtocol::Header);
}
}
else
{
done = true;
}
}
else if (m_state == DATA)
{
int bytes;
if ((m_spyServerHeader.m_message >= SpyServerProtocol::IQ8MMessage) && (m_spyServerHeader.m_message <= SpyServerProtocol::IQ32Message)) {
bytes = std::min(requiredBytes, (int) m_spyServerHeader.m_size);
} else {
bytes = m_spyServerHeader.m_size;
}
if (m_dataSocket->bytesAvailable() >= bytes)
{
qint64 bytesRead = m_dataSocket->read(&m_tcpBuf[0], bytes);
if (bytesRead == bytes)
{
if ((m_spyServerHeader.m_message >= SpyServerProtocol::IQ8MMessage) && (m_spyServerHeader.m_message <= SpyServerProtocol::IQ32Message))
{
if (!clear)
{
const int bytesPerIQPair = 2 * m_settings.m_sampleBits / 8;
processUncompressedData(&m_tcpBuf[0], bytesRead / bytesPerIQPair);
}
m_spyServerHeader.m_size -= bytesRead;
requiredBytes -= bytesRead;
if (m_spyServerHeader.m_size == 0) {
m_state = HEADER;
}
if (requiredBytes <= 0) {
done = true;
}
}
else if (m_spyServerHeader.m_message == SpyServerProtocol::StateMessage)
{
processSpyServerState((SpyServerProtocol::State *) &m_tcpBuf[0], false);
m_state = HEADER;
}
else
{
qDebug() << "RemoteTCPInputTCPHandler::processSpyServerData: Skipping unsupported message";
m_state = HEADER;
}
}
else
{
qDebug() << "RemoteTCPInputTCPHandler::processSpyServerData: Failed to read:" << bytesRead << "/" << bytes;
}
}
else
{
done = true;
}
}
}
}
void RemoteTCPInputTCPHandler::sendSettings(const RemoteTCPInputSettings& settings, const QStringList& settingsKeys)
{
if (m_messageQueueToInput) {
m_messageQueueToInput->push(RemoteTCPInput::MsgConfigureRemoteTCPInput::create(settings, settingsKeys));
}
if (m_messageQueueToGUI) {
m_messageQueueToGUI->push(RemoteTCPInput::MsgConfigureRemoteTCPInput::create(settings, settingsKeys));
}
}
void RemoteTCPInputTCPHandler::processCommands()
{
bool done = false;
while (!done)
{
if (m_state == HEADER)
{
if (m_dataSocket->bytesAvailable() >= 5)
{
quint8 buf[5];
qint64 bytesRead = m_dataSocket->read((char *) buf, sizeof(buf));
if (bytesRead == sizeof(buf))
{
m_command = (RemoteTCPProtocol::Command) buf[0];
switch (m_command)
{
case RemoteTCPProtocol::setCenterFrequency:
{
quint32 centerFrequency = (quint32) RemoteTCPProtocol::extractUInt32(&buf[1]);
if (centerFrequency != m_settings.m_centerFrequency)
{
RemoteTCPInputSettings settings = m_settings;
settings.m_centerFrequency = centerFrequency;
sendSettings(settings, {"centerFrequency"});
}
break;
}
case RemoteTCPProtocol::setSampleRate:
{
int devSampleRate = RemoteTCPProtocol::extractInt32(&buf[1]);
if (devSampleRate != m_settings.m_devSampleRate)
{
RemoteTCPInputSettings settings = m_settings;
settings.m_devSampleRate = devSampleRate;
sendSettings(settings, {"devSampleRate"});
}
break;
}
case RemoteTCPProtocol::setTunerGainMode:
{
// Currently fixed as 1
}
case RemoteTCPProtocol::setTunerGain:
{
int gain = RemoteTCPProtocol::extractUInt32(&buf[1]);
if (gain != m_settings.m_gain[0])
{
RemoteTCPInputSettings settings = m_settings;
settings.m_gain[0] = gain;
sendSettings(settings, {"gain[0]"});
}
break;
}
case RemoteTCPProtocol::setFrequencyCorrection:
{
qint32 loPpmCorrection = (qint32) RemoteTCPProtocol::extractUInt32(&buf[1]);
if (loPpmCorrection != m_settings.m_loPpmCorrection)
{
RemoteTCPInputSettings settings = m_settings;
settings.m_loPpmCorrection = loPpmCorrection;
sendSettings(settings, {"loPpmCorrection"});
}
break;
}
case RemoteTCPProtocol::setTunerIFGain:
{
int v = RemoteTCPProtocol::extractUInt32(&buf[1]);
int gain = (int)(qint16)(v & 0xffff);
int stage = (v >> 16) & 0xffff;
if ((stage < RemoteTCPInputSettings::m_maxGains) && (gain != m_settings.m_gain[stage]))
{
RemoteTCPInputSettings settings = m_settings;
settings.m_gain[stage] = gain;
sendSettings(settings, {QString("gain[%1]").arg(stage)});
}
break;
}
case RemoteTCPProtocol::setAGCMode:
{
bool agc = (bool) RemoteTCPProtocol::extractUInt32(&buf[1]);
if (agc != m_settings.m_agc)
{
RemoteTCPInputSettings settings = m_settings;
settings.m_agc = agc;
sendSettings(settings, {"agc"});
}
break;
}
case RemoteTCPProtocol::setDirectSampling:
{
bool directSampling = (bool) RemoteTCPProtocol::extractUInt32(&buf[1]);
if (directSampling != m_settings.m_directSampling)
{
RemoteTCPInputSettings settings = m_settings;
settings.m_directSampling = directSampling;
sendSettings(settings, {"directSampling"});
}
break;
}
case RemoteTCPProtocol::setBiasTee:
{
bool biasTee = (bool) RemoteTCPProtocol::extractUInt32(&buf[1]);
if (biasTee != m_settings.m_biasTee)
{
RemoteTCPInputSettings settings = m_settings;
settings.m_biasTee = biasTee;
sendSettings(settings, {"biasTee"});
}
break;
}
case RemoteTCPProtocol::setTunerBandwidth:
{
int rfBW = RemoteTCPProtocol::extractInt32(&buf[1]);
if (rfBW != m_settings.m_rfBW)
{
RemoteTCPInputSettings settings = m_settings;
settings.m_rfBW = rfBW;
sendSettings(settings, {"rfBW"});
}
break;
}
case RemoteTCPProtocol::setDecimation:
{
int log2Decim = RemoteTCPProtocol::extractInt32(&buf[1]);
if (log2Decim != m_settings.m_log2Decim)
{
RemoteTCPInputSettings settings = m_settings;
settings.m_log2Decim = log2Decim;
sendSettings(settings, {"log2Decim"});
}
break;
}
case RemoteTCPProtocol::setDCOffsetRemoval:
{
bool dcBlock = (bool) RemoteTCPProtocol::extractUInt32(&buf[1]);
if (dcBlock != m_settings.m_dcBlock)
{
RemoteTCPInputSettings settings = m_settings;
settings.m_dcBlock = dcBlock;
sendSettings(settings, {"dcBlock"});
}
break;
}
case RemoteTCPProtocol::setIQCorrection:
{
bool iqCorrection = (bool) RemoteTCPProtocol::extractUInt32(&buf[1]);
if (iqCorrection != m_settings.m_iqCorrection)
{
RemoteTCPInputSettings settings = m_settings;
settings.m_iqCorrection = iqCorrection;
sendSettings(settings, {"iqCorrection"});
}
break;
}
case RemoteTCPProtocol::setChannelSampleRate:
{
qint32 channelSampleRate = RemoteTCPProtocol::extractInt32(&buf[1]);
if (channelSampleRate != m_settings.m_channelSampleRate)
{
RemoteTCPInputSettings settings = m_settings;
settings.m_channelSampleRate = channelSampleRate;
sendSettings(settings, {"channelSampleRate"});
}
break;
}
case RemoteTCPProtocol::setChannelFreqOffset:
{
qint32 inputFrequencyOffset = (qint32) RemoteTCPProtocol::extractUInt32(&buf[1]);
if (inputFrequencyOffset != m_settings.m_inputFrequencyOffset)
{
RemoteTCPInputSettings settings = m_settings;
settings.m_inputFrequencyOffset = inputFrequencyOffset;
sendSettings(settings, {"inputFrequencyOffset"});
}
break;
}
case RemoteTCPProtocol::setChannelGain:
{
qint32 channelGain = RemoteTCPProtocol::extractInt32(&buf[1]);
if (channelGain != m_settings.m_channelGain)
{
RemoteTCPInputSettings settings = m_settings;
settings.m_channelGain = channelGain;
sendSettings(settings, {"channelGain"});
}
break;
}
case RemoteTCPProtocol::setSampleBitDepth:
{
qint32 sampleBits = RemoteTCPProtocol::extractInt32(&buf[1]);
if (sampleBits != m_settings.m_sampleBits)
{
RemoteTCPInputSettings settings = m_settings;
settings.m_sampleBits = sampleBits;
sendSettings(settings, {"sampleBits"});
}
break;
}
case RemoteTCPProtocol::setIQSquelchEnabled:
{
bool squelchEnabled = (bool) RemoteTCPProtocol::extractUInt32(&buf[1]);
if (squelchEnabled != m_settings.m_squelchEnabled)
{
RemoteTCPInputSettings settings = m_settings;
settings.m_squelchEnabled = squelchEnabled;
sendSettings(settings, {"squelchEnabled"});
}
break;
}
case RemoteTCPProtocol::setIQSquelch:
{
float squelch = RemoteTCPProtocol::extractFloat(&buf[1]);
if (squelch != m_settings.m_squelch)
{
RemoteTCPInputSettings settings = m_settings;
settings.m_squelch = squelch;
sendSettings(settings, {"squelch"});
}
break;
}
case RemoteTCPProtocol::setIQSquelchGate:
{
float squelchGate = RemoteTCPProtocol::extractFloat(&buf[1]);
if (squelchGate != m_settings.m_squelchGate)
{
RemoteTCPInputSettings settings = m_settings;
settings.m_squelchGate = squelchGate;
sendSettings(settings, {"squelchGate"});
}
break;
}
default:
m_commandLength = RemoteTCPProtocol::extractUInt32(&buf[1]);
m_state = DATA;
}
}
else
{
qDebug() << "RemoteTCPInputTCPHandler::processCommands: Failed to read:" << bytesRead << "/" << sizeof(buf);
}
}
else
{
done = true;
}
}
if (m_state == DATA)
{
if (m_dataSocket->bytesAvailable() >= m_commandLength)
{
try
{
switch (m_command)
{
case RemoteTCPProtocol::dataIQ:
{
break;
}
case RemoteTCPProtocol::dataIQFLAC:
{
qsizetype s = m_compressedData.size();
m_compressedData.resize(s + m_commandLength);
qint64 bytesRead = m_dataSocket->read(&m_compressedData.data()[s], m_commandLength);
m_compressedFrames++;
//qDebug() << "*************************** RemoteTCPProtocol::dataIQFLAC m_compressedData.size()" << m_compressedData.size() << "m_compressedFrames" << m_compressedFrames << "m_uncompressedFrames" << m_uncompressedFrames;
if (bytesRead == m_commandLength)
{
// FLAC encoder writes out 4 (fLaC), 38 (STREAMINFO), 51 (?) byte headers, that are transmitted as one command block,
// then each command block will be a complete audio block (first two bytes will be 0xfff8)
// FLAC__stream_decoder_process_single will keep calling the read callback until it's decoded one metadata or audio block
// so we need to make sure there's enough data that it will be able to return
bool decodeDone = false;
while (!decodeDone)
{
//qDebug() << "m_compressedFrames" << m_compressedFrames << "m_uncompressedFrames" << m_uncompressedFrames;
if (m_compressedFrames - 1 > m_uncompressedFrames)
{
if (!FLAC__stream_decoder_process_single(m_decoder))
{
qDebug() << "FLAC decode failed";
decodeDone = true;
}
}
else
{
decodeDone = true;
}
}
}
else
{
qDebug() << "RemoteTCPInputTCPHandler::processCommands: Failed to read:" << bytesRead << "/" << m_commandLength;
}
break;
}
case RemoteTCPProtocol::dataIQzlib:
{
if (m_commandLength > m_compressedData.size()) {
m_compressedData.resize(m_commandLength);
}
qint64 bytesRead = m_dataSocket->read(m_compressedData.data(), m_commandLength);
if (bytesRead == m_commandLength)
{
// Decompressing using zlib
m_zStream.next_in = (Bytef *) m_compressedData.data();
m_zStream.avail_in = m_commandLength;
m_zStream.next_out = (Bytef *) m_zOutBuf.data();
m_zStream.avail_out = m_zOutBuf.size();
int ret = inflate(&m_zStream, Z_NO_FLUSH);
if (ret == Z_STREAM_END) {
inflateReset(&m_zStream);
// Convert and write to uncompressed data FIFO
int uncompressedBytes = m_zOutBuf.size() - m_zStream.avail_out;
int nbSamples = uncompressedBytes / 2 / (m_settings.m_sampleBits / 8);
processDecompressedZlibData(m_zOutBuf.data(), nbSamples);
} else if (ret == Z_NEED_DICT) {
qDebug() << "zlib needs dict to inflate";
} else if (ret == Z_DATA_ERROR) {
qDebug() << "zlib data error";
} else if (ret == Z_MEM_ERROR) {
qDebug() << "zlib mem error";
} else {
qDebug() << "Unexpected zlib return value" << ret;
}
}
else
{
qDebug() << "RemoteTCPInputTCPHandler::processCommands: Failed to read:" << bytesRead << "/" << m_commandLength;
}
break;
}
case RemoteTCPProtocol::dataPosition:
{
char pos[4+4+4];
qint64 bytesRead = m_dataSocket->read(pos, m_commandLength);
if (bytesRead == m_commandLength)
{
float latitude = RemoteTCPProtocol::extractFloat((const quint8 *) &pos[0]);
float longitude = RemoteTCPProtocol::extractFloat((const quint8 *) &pos[4]);
float altitude = RemoteTCPProtocol::extractFloat((const quint8 *) &pos[8]);
qDebug() << "RemoteTCPInputTCPHandler::processCommands: Position " << latitude << longitude << altitude;
if (m_messageQueueToInput) {
m_messageQueueToInput->push(RemoteTCPInput::MsgReportPosition::create(latitude, longitude, altitude));
}
}
else
{
qDebug() << "RemoteTCPInputTCPHandler::processCommands: Failed to read:" << bytesRead << "/" << m_commandLength;
}
break;
}
case RemoteTCPProtocol::dataDirection:
{
char dir[4+4+4];
qint64 bytesRead = m_dataSocket->read(dir, m_commandLength);
if (bytesRead == m_commandLength)
{
float isotropic = RemoteTCPProtocol::extractUInt32((const quint8 *) &dir[0]);
float azimuth = RemoteTCPProtocol::extractFloat((const quint8 *) &dir[4]);
float elevation = RemoteTCPProtocol::extractFloat((const quint8 *) &dir[8]);
qDebug() << "RemoteTCPInputTCPHandler::processCommands: Direction " << isotropic << azimuth << elevation;
if (m_messageQueueToInput) {
m_messageQueueToInput->push(RemoteTCPInput::MsgReportDirection::create(isotropic, azimuth, elevation));
}
}
else
{
qDebug() << "RemoteTCPInputTCPHandler::processCommands: Failed to read:" << bytesRead << "/" << m_commandLength;
}
break;
}
case RemoteTCPProtocol::sendMessage:
{
char *buf = new char[m_commandLength];
qint64 bytesRead = m_dataSocket->read(buf, m_commandLength);
if (bytesRead == m_commandLength)
{
bool broadcast = (bool) buf[0];
int i;
for (i = 1; i < (int) m_commandLength; i++)
{
if (buf[i] == '\0') {
break;
}
}
QString callsign = QString::fromUtf8(&buf[1]);
QString text = QString::fromUtf8(&buf[i+1]);
qDebug() << "RemoteTCPInputTCPHandler::processCommands: Message " << m_dataSocket->peerAddress() << m_dataSocket->peerPort() << callsign << broadcast << text;
if (m_messageQueueToGUI) {
m_messageQueueToGUI->push(RemoteTCPInput::MsgSendMessage::create(callsign, text, broadcast));
}
}
else
{
qDebug() << "RemoteTCPInputTCPHandler::processCommands: Failed to read:" << bytesRead << "/" << m_commandLength;
}
delete[] buf;
break;
}
case RemoteTCPProtocol::sendBlacklistedMessage:
{
qDebug() << "RemoteTCPInputTCPHandler::processCommands: Disconnecting as blacklisted";
if (m_messageQueueToGUI) {
m_messageQueueToGUI->push(RemoteTCPInput::MsgSendMessage::create("", "Disconnecting as IP address is blacklisted", false));
}
m_blacklisted = true;
qDebug() << "set m_blacklisted" << m_blacklisted;
break;
}
default:
{
qDebug() << "RemoteTCPInputTCPHandler::processCommands: Unknown command" << m_command;
char *buf = new char[m_commandLength];
m_dataSocket->read(buf, m_commandLength);
delete[] buf;
break;
}
}
}
catch(std::bad_alloc&)
{
qDebug() << "RemoteTCPInputTCPHandler::processCommands: Failed to allocate memory";
done = true;
}
m_state = HEADER;
}
else
{
done = true;
}
}
}
}
// QTimer::timeout isn't guaranteed to be called on every timeout, so we need to look at the system clock
void RemoteTCPInputTCPHandler::processData()
{
QMutexLocker mutexLocker(&m_mutex);
if (m_dataSocket && (m_dataSocket->state() == QAbstractSocket::ConnectedState))
{
int sampleRate = m_settings.m_channelSampleRate;
int bytesPerIQPair = m_iqOnly ? (2 * m_settings.m_sampleBits / 8) : (2 * sizeof(Sample));
int bytesPerSecond = sampleRate * bytesPerIQPair;
qint64 bytesAvailable = m_iqOnly ? m_dataSocket->bytesAvailable() : m_uncompressedData.fill();
if ((bytesAvailable < (0.1f * m_settings.m_preFill * bytesPerSecond)) && !m_fillBuffer)
{
qDebug() << "RemoteTCPInputTCPHandler::processData: Buffering - bytesAvailable:" << bytesAvailable;
m_fillBuffer = true;
}
// Report buffer usage
// QTcpSockets buffer size should be unlimited - we pretend here it's twice as big as the point we start reading from it
if (m_messageQueueToGUI)
{
qint64 size = std::max(bytesAvailable, (qint64)(m_settings.m_preFill * bytesPerSecond));
RemoteTCPInput::MsgReportTCPBuffer *report = RemoteTCPInput::MsgReportTCPBuffer::create(
bytesAvailable, size, bytesAvailable / (float)bytesPerSecond,
m_sampleFifo->fill(), m_sampleFifo->size(), m_sampleFifo->fill() / (float)bytesPerSecond
);
m_messageQueueToGUI->push(report);
}
float factor = 0.0f;
// Prime buffer, before we start reading
if (m_fillBuffer)
{
if (bytesAvailable >= m_settings.m_preFill * bytesPerSecond)
{
qDebug() << "RemoteTCPInputTCPHandler::processData: Buffer primed - bytesAvailable:" << bytesAvailable;
m_fillBuffer = false;
m_prevDateTime = QDateTime::currentDateTime();
factor = 1.0f / 4.0f; // If this is too high, samples can just be dropped downstream
}
}
else
{
QDateTime currentDateTime = QDateTime::currentDateTime();
factor = m_prevDateTime.msecsTo(currentDateTime) / 1000.0f; // FIXME: Close skew.. Actual sample rate may differ
m_prevDateTime = currentDateTime;
}
unsigned int remaining = m_sampleFifo->size() - m_sampleFifo->fill();
unsigned int maxRequired = (unsigned int) (factor * sampleRate);
int requiredSamples = (int)std::min(maxRequired, remaining);
int overflow = maxRequired - requiredSamples;
if (overflow > 0) {
qDebug() << "Not enough space in FIFO:" << overflow << maxRequired;
}
if (!m_fillBuffer)
{
if (!m_iqOnly)
{
processDecompressedData(requiredSamples);
}
else if (!m_spyServer)
{
if (m_dataSocket->bytesAvailable() >= requiredSamples*bytesPerIQPair)
{
// rtl_tcp stream is just IQ samples
m_dataSocket->read(&m_tcpBuf[0], requiredSamples*bytesPerIQPair);
processUncompressedData(&m_tcpBuf[0], requiredSamples);
}
}
else
{
// SpyServer stream is packetized, into a header and body, with multiple packet types
int requiredBytes = requiredSamples*bytesPerIQPair;
processSpyServerData(requiredBytes, false);
}
}
}
}
// Copy from decompressed FIFO to replay buffer and sample FIFO
void RemoteTCPInputTCPHandler::processDecompressedData(int requiredSamples)
{
qint64 requiredBytes = requiredSamples * sizeof(Sample);
m_replayBuffer->lock();
while ((requiredBytes > 0) && !m_uncompressedData.empty())
{
quint8 *uncompressedPtr;
qsizetype uncompressedBytes = m_uncompressedData.readPtr(&uncompressedPtr, requiredSamples * sizeof(Sample));
qsizetype uncompressedSamples = 2 * uncompressedBytes / sizeof(Sample);
// Save data to replay buffer
bool replayEnabled = m_replayBuffer->getSize() > 0;
if (replayEnabled) {
m_replayBuffer->write((FixReal *) uncompressedPtr, (unsigned int) uncompressedSamples);
}
const FixReal *buf = (FixReal *) uncompressedPtr;
qint32 remaining = uncompressedSamples;
while (remaining > 0)
{
qint32 len;
// Choose between live data or replayed data
if (replayEnabled && m_replayBuffer->useReplay()) {
len = m_replayBuffer->read(remaining, buf);
} else {
len = remaining;
}
remaining -= len;
calcPower(reinterpret_cast<const Sample*>(buf), len / 2);
m_sampleFifo->write((quint8 *) buf, len * sizeof(FixReal));
}
m_uncompressedData.read(uncompressedBytes);
requiredBytes -= uncompressedBytes;
}
m_replayBuffer->unlock();
}
// Convert from uncompressed network format to Samples, then copy to replay buffer and sample FIFO
// The following code assumes host is little endian
void RemoteTCPInputTCPHandler::processUncompressedData(const char *inBuf, int nbSamples)
{
// Ensure conversion buffer is large enough
if (nbSamples > (int) m_converterBufferNbSamples)
{
if (m_converterBuffer) {
delete[] m_converterBuffer;
}
m_converterBuffer = new int32_t[nbSamples*2];
}
// Convert from network format to Sample
if ((m_settings.m_sampleBits == 32) && (SDR_RX_SAMP_SZ == 24) && m_spyServer)
{
const float *in = (const float *) inBuf;
qint32 *out = (qint32 *) m_converterBuffer;
for (int is = 0; is < nbSamples*2; is++) {
out[is] = (qint32)(in[is] * SDR_RX_SCALEF);
}
}
else if ((m_settings.m_sampleBits == 32) && (SDR_RX_SAMP_SZ == 16) && m_spyServer)
{
const float *in = (const float *) inBuf;
qint16 *out = (qint16 *) m_converterBuffer;
for (int is = 0; is < nbSamples*2; is++) {
out[is] = (qint16)(in[is] * SDR_RX_SCALEF);
}
}
else if ((m_settings.m_sampleBits == 8) && (SDR_RX_SAMP_SZ == 16))
{
const quint8 *in = (const quint8 *) inBuf;
qint16 *out = (qint16 *) m_converterBuffer;
for (int is = 0; is < nbSamples*2; is++) {
out[is] = (((qint16)in[is]) - 128) << 8;
}
}
else if ((m_settings.m_sampleBits == 8) && (SDR_RX_SAMP_SZ == 24))
{
const quint8 *in = (const quint8 *) inBuf;
qint32 *out = (qint32 *) m_converterBuffer;
for (int is = 0; is < nbSamples*2; is++) {
out[is] = (((qint32)in[is]) - 128) << 16;
}
}
else if ((m_settings.m_sampleBits == 24) && (SDR_RX_SAMP_SZ == 24))
{
const quint8 *in = (const quint8 *) inBuf;
qint32 *out = (qint32 *) m_converterBuffer;
for (int is = 0; is < nbSamples*2; is++) {
out[is] = (((in[3*is+2] << 16) | (in[3*is+1] << 8) | in[3*is]) << 8) >> 8;
}
}
else if ((m_settings.m_sampleBits == 24) && (SDR_RX_SAMP_SZ == 16))
{
const quint8 *in = (const quint8 *) inBuf;
qint16 *out = (qint16 *) m_converterBuffer;
for (int is = 0; is < nbSamples*2; is++) {
out[is] = (in[3*is+2] << 8) | in[3*is+1];
}
}
else if ((m_settings.m_sampleBits == 16) && (SDR_RX_SAMP_SZ == 24))
{
const qint16 *in = (const qint16 *) inBuf;
qint32 *out = (qint32 *) m_converterBuffer;
for (int is = 0; is < nbSamples*2; is++) {
out[is] = in[is] << 8;
}
}
else if ((m_settings.m_sampleBits == 32) && (SDR_RX_SAMP_SZ == 16))
{
const qint32 *in = (const qint32 *) inBuf;
qint16 *out = (qint16 *) m_converterBuffer;
for (int is = 0; is < nbSamples*2; is++) {
out[is] = in[is] >> 8;
}
}
else if ((m_settings.m_sampleBits == 32) && (SDR_RX_SAMP_SZ == 24))
{
const qint32 *in = (const qint32 *) inBuf;
qint32 *out = (qint32 *) m_converterBuffer;
for (int is = 0; is < nbSamples*2; is++) {
out[is] = in[is];
}
}
else // invalid size
{
qWarning("RemoteTCPInputTCPHandler::convert: unexpected sample size in stream: %d bits", (int) m_settings.m_sampleBits);
}
qint32 len = nbSamples*2;
// Save data to replay buffer
m_replayBuffer->lock();
bool replayEnabled = m_replayBuffer->getSize() > 0;
if (replayEnabled) {
m_replayBuffer->write((const FixReal *) m_converterBuffer, len);
}
const FixReal *buf = (const FixReal *) m_converterBuffer;
qint32 remaining = len;
while (remaining > 0)
{
// Choose between live data or replayed data
if (replayEnabled && m_replayBuffer->useReplay()) {
len = m_replayBuffer->read(remaining, buf);
} else {
len = remaining;
}
remaining -= len;
calcPower(reinterpret_cast<const Sample*>(buf), len / 2);
m_sampleFifo->write(reinterpret_cast<const quint8*>(buf), len * sizeof(FixReal));
}
m_replayBuffer->unlock();
}
void RemoteTCPInputTCPHandler::handleInputMessages()
{
Message* message;
while ((message = m_inputMessageQueue.pop()) != 0)
{
if (handleMessage(*message)) {
delete message;
}
}
}
bool RemoteTCPInputTCPHandler::handleMessage(const Message& cmd)
{
if (MsgConfigureTcpHandler::match(cmd))
{
qDebug() << "RemoteTCPInputTCPHandler::handleMessage: MsgConfigureTcpHandler";
MsgConfigureTcpHandler& notif = (MsgConfigureTcpHandler&) cmd;
applySettings(notif.getSettings(), notif.getSettingsKeys(), notif.getForce());
return true;
}
else if (RemoteTCPInput::MsgSendMessage::match(cmd))
{
RemoteTCPInput::MsgSendMessage& msg = (RemoteTCPInput::MsgSendMessage&) cmd;
sendMessage(MainCore::instance()->getSettings().getStationName(), msg.getText(), msg.getBroadcast());
return true;
}
else
{
return false;
}
}