1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-03 07:21:14 -05:00
sdrangel/plugins/channelrx/demoddatv/leansdr/rs.h

324 lines
10 KiB
C++

// This file is part of LeanSDR Copyright (C) 2016-2018 <pabr@pabr.org>.
// See the toplevel README for more information.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#ifndef LEANSDR_RS_H
#define LEANSDR_RS_H
#include "leansdr/math.h"
#define DEBUG_RS 0
namespace leansdr
{
// Finite group GF(2^N).
// GF(2) is the ring ({0,1},+,*).
// GF(2)[X] is the ring of polynomials with coefficients in GF(2).
// P(X) is an irreducible polynomial of GF(2)[X].
// N is the degree of P(x).
// P is the bitfield representation of P(X), with degree 0 at LSB.
// GF(2)[X]/(P) is GF(2)[X] modulo P(X).
// (GF(2)[X]/(P), +) is a group with 2^N elements.
// (GF(2)[X]/(P)*, *) is a group with 2^N-1 elements.
// (GF(2)[X]/(P), +, *) is a field with 2^N elements, noted GF(2^N).
// Te is a C++ integer type for representing elements of GF(2^N).
// "0" is 0
// "1" is 1
// "2" is X
// "3" is X+1
// "4" is X^2
// Tp is a C++ integer type for representing P(X) (1 bit larger than Te).
// ALPHA is a primitive element of GF(2^N). Usually "2"=[X] is chosen.
template <typename Te, typename Tp, Tp P, int N, Te ALPHA>
struct gf2x_p
{
gf2x_p()
{
if (ALPHA != 2)
fail("alpha!=2 not implemented");
// Precompute log and exp tables.
Tp alpha_i = 1;
for (Tp i = 0; i < (1 << N); ++i)
{
lut_exp[i] = alpha_i;
lut_exp[((1 << N) - 1) + i] = alpha_i;
lut_log[alpha_i] = i;
alpha_i <<= 1; // Multiply by alpha=[X] i.e. increase degrees
if (alpha_i & (1 << N))
alpha_i ^= P; // Modulo P iteratively
}
}
static const Te alpha = ALPHA;
inline Te add(Te x, Te y) { return x ^ y; } // Addition modulo 2
inline Te sub(Te x, Te y) { return x ^ y; } // Subtraction modulo 2
inline Te mul(Te x, Te y)
{
if (!x || !y)
return 0;
return lut_exp[lut_log[x] + lut_log[y]];
}
inline Te div(Te x, Te y)
{
//if ( ! y ) fail("div"); // TODO
if (!x)
return 0;
return lut_exp[lut_log[x] + ((1 << N) - 1) - lut_log[y]];
}
inline Te inv(Te x)
{
// if ( ! x ) fail("inv");
return lut_exp[((1 << N) - 1) - lut_log[x]];
}
inline Te exp(Te x) { return lut_exp[x]; }
inline Te log(Te x) { return lut_log[x]; }
private:
Te lut_exp[(1 << N) * 2]; // Wrap to avoid indexing modulo 2^N-1
Te lut_log[1 << N];
};
// Reed-Solomon for RS(204,188) shortened from RS(255,239).
struct rs_engine
{
// EN 300 421, section 4.4.2, Field Generator Polynomial
// p(X) = X^8 + X^4 + X^3 + X^2 + 1
gf2x_p<unsigned char, unsigned short, 0x11d, 8, 2> gf;
u8 G[17]; // { G_16, ..., G_0 }
rs_engine()
{
// EN 300 421, section 4.4.2, Code Generator Polynomial
// G(X) = (X-alpha^0)*...*(X-alpha^15)
for (int i = 0; i <= 16; ++i)
G[i] = (i == 16) ? 1 : 0; // Init G=1
for (int d = 0; d < 16; ++d)
{
// Multiply by (X-alpha^d)
// G := X*G - alpha^d*G
for (int i = 0; i <= 16; ++i)
G[i] = gf.sub((i == 16) ? 0 : G[i + 1], gf.mul(gf.exp(d), G[i]));
}
#if DEBUG_RS
fprintf(stderr, "RS generator:");
for (int i = 0; i <= 16; ++i)
fprintf(stderr, " %02x", G[i]);
fprintf(stderr, "\n");
#endif
}
// RS-encoded messages are interpreted as coefficients in
// GF(256) of a polynomial P.
// The syndromes are synd[i] = P(alpha^i).
// By convention coefficients are listed by decreasing degree here,
// so we can evaluate syndromes of the shortened code without
// prepending with 51 zeroes.
bool syndromes(const u8 *poly, u8 *synd)
{
bool corrupted = false;
for (int i = 0; i < 16; ++i)
{
synd[i] = eval_poly_rev(poly, 204, gf.exp(i));
if (synd[i])
corrupted = true;
}
return corrupted;
}
u8 eval_poly_rev(const u8 *poly, int n, u8 x)
{
// poly[0]*x^(n-1) + .. + poly[n-1]*x^0 with Hörner method.
u8 acc = 0;
for (int i = 0; i < n; ++i)
acc = gf.add(gf.mul(acc, x), poly[i]);
return acc;
}
// Evaluation with coefficients listed by increasing degree.
u8 eval_poly(const u8 *poly, int deg, u8 x)
{
// poly[0]*x^0 + .. + poly[deg]*x^deg with Hörner method.
u8 acc = 0;
for (; deg >= 0; --deg)
acc = gf.add(gf.mul(acc, x), poly[deg]);
return acc;
}
// Append parity symbols
void encode(u8 msg[204])
{
// TBD Avoid copying
u8 p[204];
memcpy(p, msg, 188);
memset(p + 188, 0, 16);
// p = msg*X^16
#if DEBUG_RS
fprintf(stderr, "uncoded:");
for (int i = 0; i < 204; ++i)
fprintf(stderr, " %d", p[i]);
fprintf(stderr, "\n");
#endif
// Compute remainder modulo G
for (int d = 0; d < 188; ++d)
{
// Clear monomial of degree d
if (!p[d])
continue;
u8 k = gf.div(p[d], G[0]);
// p(X) := p(X) - k*G(X)*X^(188-d)
for (int i = 0; i <= 16; ++i)
p[d + i] = gf.sub(p[d + i], gf.mul(k, G[i]));
}
#if DEBUG_RS
fprintf(stderr, "coded:");
for (int i = 0; i < 204; ++i)
fprintf(stderr, " %d", p[i]);
fprintf(stderr, "\n");
#endif
memcpy(msg + 188, p + 188, 16);
}
// Try to fix errors in pout[].
// If pin[] is provided, errors will be fixed in the original
// message too and syndromes will be updated.
bool correct(u8 synd[16], u8 pout[188],
u8 pin[204] = NULL, int *bits_corrected = NULL)
{
// Berlekamp - Massey
// http://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm#Code_sample
u8 C[16] = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // Max degree is L
u8 B[16] = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
int L = 0;
int m = 1;
u8 b = 1;
for (int n = 0; n < 16; ++n)
{
u8 d = synd[n];
for (int i = 1; i <= L; ++i)
d ^= gf.mul(C[i], synd[n - i]);
if (!d)
{
++m;
}
else if (2 * L <= n)
{
u8 T[16];
memcpy(T, C, sizeof(T));
for (int i = 0; i < 16 - m; ++i)
C[m + i] ^= gf.mul(d, gf.mul(gf.inv(b), B[i]));
L = n + 1 - L;
memcpy(B, T, sizeof(B));
b = d;
m = 1;
}
else
{
for (int i = 0; i < 16 - m; ++i)
C[m + i] ^= gf.mul(d, gf.mul(gf.inv(b), B[i]));
++m;
}
}
// L is the number of errors
// C of degree L is now the error locator polynomial (Lambda)
#if DEBUG_RS
fprintf(stderr, "[L=%d C=", L);
for (int i = 0; i < 16; ++i)
fprintf(stderr, " %d", C[i]);
fprintf(stderr, "]\n");
fprintf(stderr, "[S=");
for (int i = 0; i < 16; ++i)
fprintf(stderr, " %d", synd[i]);
fprintf(stderr, "]\n");
#endif
// Forney
// http://en.wikipedia.org/wiki/Forney_algorithm (2t=16)
// Compute Omega
u8 omega[16];
memset(omega, 0, sizeof(omega));
// TODO loops
for (int i = 0; i < 16; ++i)
for (int j = 0; j < 16; ++j)
if (i + j < 16)
omega[i + j] ^= gf.mul(synd[i], C[j]);
#if DEBUG_RS
fprintf(stderr, "omega=");
for (int i = 0; i < 16; ++i)
fprintf(stderr, " %d", omega[i]);
fprintf(stderr, "\n");
#endif
// Compute Lambda'
u8 Cprime[15];
for (int i = 0; i < 15; ++i)
Cprime[i] = (i & 1) ? 0 : C[i + 1];
#if DEBUG_RS
fprintf(stderr, "Cprime=");
for (int i = 0; i < 15; ++i)
fprintf(stderr, " %d", Cprime[i]);
fprintf(stderr, "\n");
#endif
// Find zeroes of C by exhaustive search?
// TODO Chien method
int roots_found = 0;
for (int i = 0; i < 255; ++i)
{
u8 r = gf.exp(i); // Candidate root alpha^0..alpha^254
u8 v = eval_poly(C, L, r);
if (!v)
{
// r is a root X_k^-1 of the error locator polynomial.
u8 xk = gf.inv(r);
int loc = (255 - i) % 255; // == log(xk)
#if DEBUG_RS
fprintf(stderr, "found root=%d, inv=%d, loc=%d\n", r, xk, loc);
#endif
if (loc < 204)
{
// Evaluate e_k
u8 num = gf.mul(xk, eval_poly(omega, L, r));
u8 den = eval_poly(Cprime, 14, r);
u8 e = gf.div(num, den);
// Subtract e from coefficient of degree loc.
// Note: Coeffients listed by decreasing degree in pin[] and pout[].
if (bits_corrected)
*bits_corrected += hamming_weight(e);
if (loc >= 16)
pout[203 - loc] ^= e;
if (pin)
pin[203 - loc] ^= e;
}
if (++roots_found == L)
break;
}
}
if (pin)
return syndromes(pin, synd);
else
return false;
}
};
} // namespace leansdr
#endif // LEANSDR_RS_H