1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-27 02:09:14 -05:00
sdrangel/plugins/channeltx/udpsink/udpsink.cpp

562 lines
19 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QDebug>
#include "dsp/upchannelizer.h"
#include "util/db.h"
#include "udpsinkmsg.h"
#include "udpsink.h"
MESSAGE_CLASS_DEFINITION(UDPSink::MsgUDPSinkConfigure, Message)
MESSAGE_CLASS_DEFINITION(UDPSink::MsgUDPSinkSpectrum, Message)
MESSAGE_CLASS_DEFINITION(UDPSink::MsgResetReadIndex, Message)
UDPSink::UDPSink(MessageQueue* uiMessageQueue, UDPSinkGUI* udpSinkGUI, BasebandSampleSink* spectrum) :
m_uiMessageQueue(uiMessageQueue),
m_udpSinkGUI(udpSinkGUI),
m_spectrum(spectrum),
m_spectrumEnabled(false),
m_spectrumChunkSize(2160),
m_spectrumChunkCounter(0),
m_magsq(1e-10),
m_movingAverage(16, 1e-10),
m_inMovingAverage(480, 1e-10),
m_sampleRateSum(0),
m_sampleRateAvgCounter(0),
m_levelCalcCount(0),
m_peakLevel(0.0f),
m_levelSum(0.0f),
m_levelNbSamples(480),
m_squelchOpen(false),
m_squelchOpenCount(0),
m_squelchCloseCount(0),
m_squelchThreshold(4800),
m_modPhasor(0.0f),
m_SSBFilterBufferIndex(0),
m_settingsMutex(QMutex::Recursive)
{
setObjectName("UDPSink");
m_udpHandler.setFeedbackMessageQueue(&m_inputMessageQueue);
m_SSBFilter = new fftfilt(m_config.m_lowCutoff / m_config.m_inputSampleRate, m_config.m_rfBandwidth / m_config.m_inputSampleRate, m_ssbFftLen);
m_SSBFilterBuffer = new Complex[m_ssbFftLen>>1]; // filter returns data exactly half of its size
apply(true);
}
UDPSink::~UDPSink()
{
delete[] m_SSBFilterBuffer;
delete m_SSBFilter;
}
void UDPSink::start()
{
m_udpHandler.start();
}
void UDPSink::stop()
{
m_udpHandler.stop();
}
void UDPSink::pull(Sample& sample)
{
if (m_running.m_channelMute)
{
sample.m_real = 0.0f;
sample.m_imag = 0.0f;
initSquelch(false);
return;
}
Complex ci;
m_settingsMutex.lock();
if (m_interpolatorDistance > 1.0f) // decimate
{
modulateSample();
while (!m_interpolator.decimate(&m_interpolatorDistanceRemain, m_modSample, &ci))
{
modulateSample();
}
}
else
{
if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, m_modSample, &ci))
{
modulateSample();
}
}
m_interpolatorDistanceRemain += m_interpolatorDistance;
ci *= m_carrierNco.nextIQ(); // shift to carrier frequency
m_settingsMutex.unlock();
double magsq = ci.real() * ci.real() + ci.imag() * ci.imag();
magsq /= (1<<30);
m_movingAverage.feed(magsq);
m_magsq = m_movingAverage.average();
sample.m_real = (FixReal) ci.real();
sample.m_imag = (FixReal) ci.imag();
}
void UDPSink::modulateSample()
{
if (m_running.m_sampleFormat == FormatS16LE) // Linear I/Q transponding
{
Sample s;
m_udpHandler.readSample(s);
uint64_t magsq = s.m_real * s.m_real + s.m_imag * s.m_imag;
m_inMovingAverage.feed(magsq/1073741824.0);
m_inMagsq = m_inMovingAverage.average();
calculateSquelch(m_inMagsq);
if (m_squelchOpen)
{
m_modSample.real(s.m_real * m_running.m_gainOut);
m_modSample.imag(s.m_imag * m_running.m_gainOut);
calculateLevel(m_modSample);
}
else
{
m_modSample.real(0.0f);
m_modSample.imag(0.0f);
}
}
else if (m_running.m_sampleFormat == FormatNFM)
{
FixReal t;
readMonoSample(t);
m_inMovingAverage.feed((t*t)/1073741824.0);
m_inMagsq = m_inMovingAverage.average();
calculateSquelch(m_inMagsq);
if (m_squelchOpen)
{
m_modPhasor += (m_running.m_fmDeviation / m_running.m_inputSampleRate) * (t / 32768.0f) * M_PI * 2.0f;
m_modSample.real(cos(m_modPhasor) * 10362.2f * m_running.m_gainOut);
m_modSample.imag(sin(m_modPhasor) * 10362.2f * m_running.m_gainOut);
calculateLevel(m_modSample);
}
else
{
m_modSample.real(0.0f);
m_modSample.imag(0.0f);
}
}
else if (m_running.m_sampleFormat == FormatAM)
{
FixReal t;
readMonoSample(t);
m_inMovingAverage.feed((t*t)/1073741824.0);
m_inMagsq = m_inMovingAverage.average();
calculateSquelch(m_inMagsq);
if (m_squelchOpen)
{
m_modSample.real(((t / 32768.0f)*m_running.m_amModFactor*m_running.m_gainOut + 1.0f) * 16384.0f); // modulate and scale zero frequency carrier
m_modSample.imag(0.0f);
calculateLevel(m_modSample);
}
else
{
m_modSample.real(0.0f);
m_modSample.imag(0.0f);
}
}
else if ((m_running.m_sampleFormat == FormatLSB) || (m_running.m_sampleFormat == FormatUSB))
{
FixReal t;
Complex c, ci;
fftfilt::cmplx *filtered;
int n_out = 0;
readMonoSample(t);
m_inMovingAverage.feed((t*t)/1073741824.0);
m_inMagsq = m_inMovingAverage.average();
calculateSquelch(m_inMagsq);
if (m_squelchOpen)
{
ci.real((t / 32768.0f) * m_running.m_gainOut);
ci.imag(0.0f);
n_out = m_SSBFilter->runSSB(ci, &filtered, (m_running.m_sampleFormat == FormatUSB));
if (n_out > 0)
{
memcpy((void *) m_SSBFilterBuffer, (const void *) filtered, n_out*sizeof(Complex));
m_SSBFilterBufferIndex = 0;
}
c = m_SSBFilterBuffer[m_SSBFilterBufferIndex];
m_modSample.real(m_SSBFilterBuffer[m_SSBFilterBufferIndex].real() * 32768.0f);
m_modSample.imag(m_SSBFilterBuffer[m_SSBFilterBufferIndex].imag() * 32768.0f);
m_SSBFilterBufferIndex++;
calculateLevel(m_modSample);
}
else
{
m_modSample.real(0.0f);
m_modSample.imag(0.0f);
}
}
else
{
m_modSample.real(0.0f);
m_modSample.imag(0.0f);
initSquelch(false);
}
if (m_spectrum && m_spectrumEnabled && (m_spectrumChunkCounter < m_spectrumChunkSize - 1))
{
Sample s;
s.m_real = (FixReal) m_modSample.real();
s.m_imag = (FixReal) m_modSample.imag();
m_sampleBuffer.push_back(s);
m_spectrumChunkCounter++;
}
else
{
m_spectrum->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), false);
m_sampleBuffer.clear();
m_spectrumChunkCounter = 0;
}
}
void UDPSink::calculateLevel(Real sample)
{
if (m_levelCalcCount < m_levelNbSamples)
{
m_peakLevel = std::max(std::fabs(m_peakLevel), sample);
m_levelSum += sample * sample;
m_levelCalcCount++;
}
else
{
qreal rmsLevel = m_levelSum > 0.0 ? sqrt(m_levelSum / m_levelNbSamples) : 0.0;
//qDebug("NFMMod::calculateLevel: %f %f", rmsLevel, m_peakLevel);
emit levelChanged(rmsLevel, m_peakLevel, m_levelNbSamples);
m_peakLevel = 0.0f;
m_levelSum = 0.0f;
m_levelCalcCount = 0;
}
}
void UDPSink::calculateLevel(Complex sample)
{
Real t = std::abs(sample);
if (m_levelCalcCount < m_levelNbSamples)
{
m_peakLevel = std::max(std::fabs(m_peakLevel), t);
m_levelSum += (t * t);
m_levelCalcCount++;
}
else
{
qreal rmsLevel = m_levelSum > 0.0 ? sqrt((m_levelSum/(1<<30)) / m_levelNbSamples) : 0.0;
emit levelChanged(rmsLevel, m_peakLevel / 32768.0, m_levelNbSamples);
m_peakLevel = 0.0f;
m_levelSum = 0.0f;
m_levelCalcCount = 0;
}
}
bool UDPSink::handleMessage(const Message& cmd)
{
if (UpChannelizer::MsgChannelizerNotification::match(cmd))
{
UpChannelizer::MsgChannelizerNotification& notif = (UpChannelizer::MsgChannelizerNotification&) cmd;
m_config.m_basebandSampleRate = notif.getBasebandSampleRate();
m_config.m_outputSampleRate = notif.getSampleRate();
m_config.m_inputFrequencyOffset = notif.getFrequencyOffset();
apply(false);
qDebug() << "UDPSink::handleMessage: MsgChannelizerNotification:"
<< " m_basebandSampleRate: " << m_config.m_basebandSampleRate
<< " m_outputSampleRate: " << m_config.m_outputSampleRate
<< " m_inputFrequencyOffset: " << m_config.m_inputFrequencyOffset;
return true;
}
else if (MsgUDPSinkConfigure::match(cmd))
{
MsgUDPSinkConfigure& cfg = (MsgUDPSinkConfigure&) cmd;
m_config.m_sampleFormat = cfg.getSampleFormat();
m_config.m_inputSampleRate = cfg.getInputSampleRate();
m_config.m_rfBandwidth = cfg.getRFBandwidth();
m_config.m_fmDeviation = cfg.getFMDeviation();
m_config.m_udpAddressStr = cfg.getUDPAddress();
m_config.m_udpPort = cfg.getUDPPort();
m_config.m_channelMute = cfg.getChannelMute();
m_config.m_gainIn = cfg.getGainIn();
m_config.m_gainOut = cfg.getGainOut();
m_config.m_squelch = CalcDb::powerFromdB(cfg.getSquelchDB());
m_config.m_squelchGate = cfg.getSquelchGate();
m_config.m_squelchEnabled = cfg.getSquelchEnabled();
m_config.m_autoRWBalance = cfg.getAutoRWBalance();
m_config.m_stereoInput = cfg.getStereoInput();
apply(cfg.getForce());
qDebug() << "UDPSink::handleMessage: MsgUDPSinkConfigure:"
<< " m_sampleFormat: " << m_config.m_sampleFormat
<< " m_inputSampleRate: " << m_config.m_inputSampleRate
<< " m_rfBandwidth: " << m_config.m_rfBandwidth
<< " m_fmDeviation: " << m_config.m_fmDeviation
<< " m_udpAddressStr: " << m_config.m_udpAddressStr
<< " m_udpPort: " << m_config.m_udpPort
<< " m_channelMute: " << m_config.m_channelMute
<< " m_gainIn: " << m_config.m_gainIn
<< " m_gainOut: " << m_config.m_gainOut
<< " squelchDB: " << cfg.getSquelchDB()
<< " m_squelchGate: " << m_config.m_squelchGate
<< " m_squelch: " << m_config.m_squelch
<< " m_squelchEnabled: " << m_config.m_squelchEnabled
<< " m_autoRWBalance: " << m_config.m_autoRWBalance
<< " m_stereoInput: " << m_config.m_stereoInput;
return true;
}
else if (UDPSinkMessages::MsgSampleRateCorrection::match(cmd))
{
UDPSinkMessages::MsgSampleRateCorrection& cfg = (UDPSinkMessages::MsgSampleRateCorrection&) cmd;
Real newSampleRate = m_actualInputSampleRate + cfg.getCorrectionFactor() * m_actualInputSampleRate;
// exclude values too way out nominal sample rate (20%)
if ((newSampleRate < m_running.m_inputSampleRate * 1.2) && (newSampleRate > m_running.m_inputSampleRate * 0.8))
{
m_actualInputSampleRate = newSampleRate;
if ((cfg.getRawDeltaRatio() > -0.05) || (cfg.getRawDeltaRatio() < 0.05))
{
if (m_sampleRateAvgCounter < m_sampleRateAverageItems)
{
m_sampleRateSum += m_actualInputSampleRate;
m_sampleRateAvgCounter++;
}
}
else
{
m_sampleRateSum = 0.0;
m_sampleRateAvgCounter = 0;
}
if (m_sampleRateAvgCounter == m_sampleRateAverageItems)
{
float avgRate = m_sampleRateSum / m_sampleRateAverageItems;
qDebug("UDPSink::handleMessage: MsgSampleRateCorrection: corr: %+.6f new rate: %.0f: avg rate: %.0f",
cfg.getCorrectionFactor(),
m_actualInputSampleRate,
avgRate);
m_actualInputSampleRate = avgRate;
m_sampleRateSum = 0.0;
m_sampleRateAvgCounter = 0;
}
// else
// {
// qDebug("UDPSink::handleMessage: MsgSampleRateCorrection: corr: %+.6f new rate: %.0f",
// cfg.getCorrectionFactor(),
// m_actualInputSampleRate);
// }
m_settingsMutex.lock();
m_interpolatorDistanceRemain = 0;
m_interpolatorConsumed = false;
m_interpolatorDistance = (Real) m_actualInputSampleRate / (Real) m_config.m_outputSampleRate;
//m_interpolator.create(48, m_actualInputSampleRate, m_config.m_rfBandwidth / 2.2, 3.0); // causes clicking: leaving at standard frequency
m_settingsMutex.unlock();
}
return true;
}
else if (MsgUDPSinkSpectrum::match(cmd))
{
MsgUDPSinkSpectrum& spc = (MsgUDPSinkSpectrum&) cmd;
m_spectrumEnabled = spc.getEnabled();
qDebug() << "UDPSink::handleMessage: MsgUDPSinkSpectrum: m_spectrumEnabled: " << m_spectrumEnabled;
return true;
}
else if (MsgResetReadIndex::match(cmd))
{
m_settingsMutex.lock();
m_udpHandler.resetReadIndex();
m_settingsMutex.unlock();
qDebug() << "UDPSink::handleMessage: MsgResetReadIndex";
return true;
}
else
{
if(m_spectrum != 0)
{
return m_spectrum->handleMessage(cmd);
}
else
{
return false;
}
}
}
void UDPSink::configure(MessageQueue* messageQueue,
SampleFormat sampleFormat,
Real outputSampleRate,
Real rfBandwidth,
int fmDeviation,
Real amModFactor,
const QString& udpAddress,
int udpPort,
bool channelMute,
Real gainIn,
Real gainOut,
Real squelchDB,
Real squelchGate,
bool squelchEnabled,
bool autoRWBalance,
bool stereoInput,
bool force)
{
Message* cmd = MsgUDPSinkConfigure::create(sampleFormat,
outputSampleRate,
rfBandwidth,
fmDeviation,
amModFactor,
udpAddress,
udpPort,
channelMute,
gainIn,
gainOut,
squelchDB,
squelchGate,
squelchEnabled,
autoRWBalance,
stereoInput,
force);
messageQueue->push(cmd);
}
void UDPSink::setSpectrum(MessageQueue* messageQueue, bool enabled)
{
Message* cmd = MsgUDPSinkSpectrum::create(enabled);
messageQueue->push(cmd);
}
void UDPSink::resetReadIndex(MessageQueue* messageQueue)
{
Message* cmd = MsgResetReadIndex::create();
messageQueue->push(cmd);
}
void UDPSink::apply(bool force)
{
if ((m_config.m_inputFrequencyOffset != m_running.m_inputFrequencyOffset) ||
(m_config.m_outputSampleRate != m_running.m_outputSampleRate) || force)
{
m_settingsMutex.lock();
m_carrierNco.setFreq(m_config.m_inputFrequencyOffset, m_config.m_outputSampleRate);
m_settingsMutex.unlock();
}
if((m_config.m_outputSampleRate != m_running.m_outputSampleRate) ||
(m_config.m_rfBandwidth != m_running.m_rfBandwidth) ||
(m_config.m_inputSampleRate != m_running.m_inputSampleRate) || force)
{
m_settingsMutex.lock();
m_interpolatorDistanceRemain = 0;
m_interpolatorConsumed = false;
m_interpolatorDistance = (Real) m_config.m_inputSampleRate / (Real) m_config.m_outputSampleRate;
m_interpolator.create(48, m_config.m_inputSampleRate, m_config.m_rfBandwidth / 2.2, 3.0);
m_actualInputSampleRate = m_config.m_inputSampleRate;
m_udpHandler.resetReadIndex();
m_sampleRateSum = 0.0;
m_sampleRateAvgCounter = 0;
m_spectrumChunkSize = m_config.m_inputSampleRate * 0.05; // 50 ms chunk
m_spectrumChunkCounter = 0;
m_levelNbSamples = m_config.m_inputSampleRate * 0.01; // every 10 ms
m_levelCalcCount = 0;
m_peakLevel = 0.0f;
m_levelSum = 0.0f;
m_udpHandler.resizeBuffer(m_config.m_inputSampleRate);
m_inMovingAverage.resize(m_config.m_inputSampleRate * 0.01, 1e-10); // 10 ms
m_squelchThreshold = m_config.m_inputSampleRate * m_config.m_squelchGate;
initSquelch(m_squelchOpen);
m_SSBFilter->create_filter(m_config.m_lowCutoff / m_config.m_inputSampleRate, m_config.m_rfBandwidth / m_config.m_inputSampleRate);
m_settingsMutex.unlock();
}
if ((m_config.m_squelchGate != m_running.m_squelchGate) || force)
{
m_squelchThreshold = m_config.m_outputSampleRate * m_config.m_squelchGate;
initSquelch(m_squelchOpen);
}
if ((m_config.m_udpAddressStr != m_running.m_udpAddressStr) ||
(m_config.m_udpPort != m_running.m_udpPort) || force)
{
m_settingsMutex.lock();
m_udpHandler.configureUDPLink(m_config.m_udpAddressStr, m_config.m_udpPort);
m_settingsMutex.unlock();
}
if ((m_config.m_channelMute != m_running.m_channelMute) || force)
{
if (!m_config.m_channelMute) {
m_udpHandler.resetReadIndex();
}
}
if ((m_config.m_autoRWBalance != m_running.m_autoRWBalance) || force)
{
m_settingsMutex.lock();
m_udpHandler.setAutoRWBalance(m_config.m_autoRWBalance);
if (!m_config.m_autoRWBalance)
{
m_interpolatorDistanceRemain = 0;
m_interpolatorConsumed = false;
m_interpolatorDistance = (Real) m_config.m_inputSampleRate / (Real) m_config.m_outputSampleRate;
m_interpolator.create(48, m_config.m_inputSampleRate, m_config.m_rfBandwidth / 2.2, 3.0);
m_actualInputSampleRate = m_config.m_inputSampleRate;
m_udpHandler.resetReadIndex();
}
m_settingsMutex.unlock();
}
m_running = m_config;
}