1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-18 14:21:49 -05:00
sdrangel/plugins/channeltx/mod802.15.4/ieee_802_15_4_modsource.cpp

735 lines
26 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2020-2022 Jon Beniston, M7RCE <jon@beniston.com> //
// Copyright (C) 2020-2021 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <cctype>
#include <QDebug>
#include <QUdpSocket>
#include <QNetworkDatagram>
#include <QVariant>
#include "dsp/basebandsamplesink.h"
#include "dsp/scopevis.h"
#include "ieee_802_15_4_modsource.h"
#include "util/crc.h"
MESSAGE_CLASS_DEFINITION(IEEE_802_15_4_ModSource::MsgCloseUDP, Message)
MESSAGE_CLASS_DEFINITION(IEEE_802_15_4_ModSource::MsgOpenUDP, Message)
IEEE_802_15_4_ModSource::IEEE_802_15_4_ModSource() :
m_channelSampleRate(3000000),
m_channelFrequencyOffset(0),
m_spectrumRate(0),
m_sinLUT(nullptr),
m_scrambler(0x108, 0x1fe, 1),
m_spectrumSink(nullptr),
m_scopeSink(nullptr),
m_specSampleBufferIndex(0),
m_scopeSampleBufferIndex(0),
m_magsq(0.0),
m_levelCalcCount(0),
m_peakLevel(0.0f),
m_levelSum(0.0f),
m_sampleIdx(0),
m_chipsPerSymbol(15),
m_bitsPerSymbol(1),
m_chipRate(300000),
m_state(idle),
m_byteIdx(0),
m_bitIdx(0),
m_bitCount(0),
m_udpSocket(nullptr)
{
m_lowpass.create(301, m_channelSampleRate, 22000.0 / 2.0);
m_pulseShapeI.create(1, 6, m_channelSampleRate/300000, true);
m_pulseShapeQ.create(1, 6, m_channelSampleRate/300000, true);
m_specSampleBuffer.resize(m_specSampleBufferSize);
m_scopeSampleBuffer.resize(m_scopeSampleBufferSize);
applySettings(m_settings, true);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
connect(&m_inputMessageQueue, SIGNAL(messageEnqueued()), this, SLOT(handleInputMessages()));
}
IEEE_802_15_4_ModSource::~IEEE_802_15_4_ModSource()
{
closeUDP();
delete[] m_sinLUT;
}
void IEEE_802_15_4_ModSource::pull(SampleVector::iterator begin, unsigned int nbSamples)
{
std::for_each(
begin,
begin + nbSamples,
[this](Sample& s) {
pullOne(s);
}
);
}
void IEEE_802_15_4_ModSource::pullOne(Sample& sample)
{
if (m_settings.m_channelMute)
{
sample.m_real = 0.0f;
sample.m_imag = 0.0f;
return;
}
// Calculate next sample
modulateSample();
// Shift to carrier frequency
Complex ci = m_modSample;
ci *= m_carrierNco.nextIQ();
// Calculate power
double magsq = ci.real() * ci.real() + ci.imag() * ci.imag();
m_movingAverage(magsq);
m_magsq = m_movingAverage.asDouble();
// Convert from float to fixed point
sample.m_real = (FixReal) (ci.real() * SDR_TX_SCALEF);
sample.m_imag = (FixReal) (ci.imag() * SDR_TX_SCALEF);
}
void IEEE_802_15_4_ModSource::sampleToSpectrum(Complex sample)
{
if (m_spectrumSink && (m_settings.m_spectrumRate > 0))
{
Complex out;
// Could use a simpler filter here, as currently m_spectrumRate is
// always an integer multiple of m_channelSampleRate
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, sample, &out))
{
Real r = std::real(out) * SDR_TX_SCALEF;
Real i = std::imag(out) * SDR_TX_SCALEF;
m_specSampleBuffer[m_specSampleBufferIndex++] = Sample(r, i);
if (m_specSampleBufferIndex == m_specSampleBufferSize)
{
m_spectrumSink->feed(m_specSampleBuffer.begin(), m_specSampleBuffer.end(), false);
m_specSampleBufferIndex = 0;
}
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
}
void IEEE_802_15_4_ModSource::sampleToScope(Complex sample)
{
if (m_scopeSink)
{
Real r = std::real(sample) * SDR_RX_SCALEF;
Real i = std::imag(sample) * SDR_RX_SCALEF;
m_scopeSampleBuffer[m_scopeSampleBufferIndex++] = Sample(r, i);
if (m_scopeSampleBufferIndex == m_scopeSampleBufferSize)
{
std::vector<SampleVector::const_iterator> vbegin;
vbegin.push_back(m_scopeSampleBuffer.begin());
m_scopeSink->feed(vbegin, m_scopeSampleBufferSize);
m_scopeSampleBufferIndex = 0;
}
}
}
void IEEE_802_15_4_ModSource::modulateSample()
{
Real linearRampGain;
Real i, q;
if ((m_state == idle) || (m_state == wait))
{
Real audioMod = 0.0f;
m_modSample.real(audioMod);
m_modSample.imag(0);
calculateLevel(audioMod);
sampleToSpectrum(m_modSample);
sampleToScope(m_modSample);
if (m_state == wait)
{
m_waitCounter--;
if (m_waitCounter == 0)
initTX();
}
}
else
{
if (m_sampleIdx == 0)
{
if (chipsValid())
m_chips[m_chipOdd] = getChip();
// Should we start ramping down power?
if ((m_bitCount < m_settings.m_rampDownBits) || ((m_bitCount == 0) && !m_settings.m_rampDownBits))
{
m_state = ramp_down;
if (m_settings.m_rampDownBits > 0)
m_powRamp = -m_settings.m_rampRange/(m_settings.m_rampDownBits * (Real)m_samplesPerChip);
}
}
if (!m_settings.m_bbNoise)
{
if (m_settings.m_modulation == IEEE_802_15_4_ModSettings::BPSK)
{
// BPSK - Raised cosine pulse shaping
if ((m_sampleIdx == 1) && (m_state != ramp_down))
i = m_pulseShapeI.filter(m_chips[0] ? 1.0f : -1.0f);
else
i = m_pulseShapeI.filter(0.0f);
q = 0.0f;
}
else
{
if (m_settings.m_pulseShaping == IEEE_802_15_4_ModSettings::SINE)
{
// O-QPSK - Half-sine pulse shaping over 2 chips. Even chips on I, odd on Q. 1-chip out of phase.
i = (m_chips[0] ? 1.0f : -1.0f) * m_sinLUT[m_sampleIdx+(m_chipOdd ? m_samplesPerChip : 0)];
q = (m_chips[1] ? 1.0f : -1.0f) * m_sinLUT[m_sampleIdx+(m_chipOdd ? 0 : m_samplesPerChip)];
}
else
{
// O-QPSK - Raised cosine pulse shaping. Even chips on I, odd on Q. 1-chip out of phase.
if ((m_sampleIdx == 1) && (m_state != ramp_down) && !m_chipOdd)
i = m_pulseShapeI.filter(m_chips[0] ? 1.0f : -1.0f);
else
i = m_pulseShapeI.filter(0.0f);
if ((m_sampleIdx == 1) && (m_state != ramp_down) && m_chipOdd)
q = m_pulseShapeQ.filter(m_chips[1] ? 1.0f : -1.0f);
else
q = m_pulseShapeQ.filter(0.0f);
}
}
}
else
{
i = (Real)rand()/((Real)RAND_MAX)-0.5; // Noise to test filter frequency response
q = (Real)rand()/((Real)RAND_MAX)-0.5;
}
if (m_basebandFile.is_open())
m_basebandFile << m_chips[0] << "," << m_chips[1] << "," << m_chipOdd << "," << i << "," << q << "," << (m_sampleIdx+(m_chipOdd ? m_samplesPerChip : 0)) << "," << (m_sampleIdx+(m_chipOdd ? 0 : m_samplesPerChip)) << "\n";
m_sampleIdx++;
if (m_sampleIdx >= m_samplesPerChip)
{
m_sampleIdx = 0;
if (m_settings.m_modulation == IEEE_802_15_4_ModSettings::OQPSK)
m_chipOdd = !m_chipOdd;
}
linearRampGain = powf(10.0f, m_pow/20.0f);
m_modSample.real(m_linearGain * linearRampGain * i);
m_modSample.imag(m_linearGain * linearRampGain * q);
// Display baseband audio in spectrum analyser
sampleToSpectrum(m_modSample);
sampleToScope(m_modSample);
// Apply low pass filter to limit RF BW
m_modSample = m_lowpass.filter(m_modSample);
// Ramp up/down power at start/end of frame
if ((m_state == ramp_up) || (m_state == ramp_down))
{
m_pow += m_powRamp;
if ((m_state == ramp_up) && (m_pow >= 0.0f))
{
// Finished ramp up, transmit at full gain
m_state = tx;
m_pow = 0.0f;
}
else if ((m_state == ramp_down) && ( (m_settings.m_rampRange == 0)
|| (m_settings.m_rampDownBits == 0)
|| (m_pow <= -(Real)m_settings.m_rampRange)
))
{
m_state = idle;
// Do we need to retransmit the frame?
if (m_settings.m_repeat)
{
if (m_frameRepeatCount > 0)
m_frameRepeatCount--;
if ((m_frameRepeatCount == IEEE_802_15_4_ModSettings::infinitePackets) || (m_frameRepeatCount > 0))
{
if (m_settings.m_repeatDelay > 0.0f)
{
// Wait before retransmitting
m_state = wait;
m_waitCounter = m_settings.m_repeatDelay * m_channelSampleRate;
}
else
{
// Retransmit immediately
initTX();
}
}
}
}
}
Real s = std::real(m_modSample);
calculateLevel(s);
}
}
void IEEE_802_15_4_ModSource::calculateLevel(Real& sample)
{
if (m_levelCalcCount < m_levelNbSamples)
{
m_peakLevel = std::max(std::fabs(m_peakLevel), sample);
m_levelSum += sample * sample;
m_levelCalcCount++;
}
else
{
m_rmsLevel = sqrt(m_levelSum / m_levelNbSamples);
m_peakLevelOut = m_peakLevel;
m_peakLevel = 0.0f;
m_levelSum = 0.0f;
m_levelCalcCount = 0;
}
}
void IEEE_802_15_4_ModSource::applySettings(const IEEE_802_15_4_ModSettings& settings, bool force)
{
// Only recreate filters if settings have changed
if ((settings.m_lpfTaps != m_settings.m_lpfTaps) || (settings.m_rfBandwidth != m_settings.m_rfBandwidth) || force)
{
qDebug() << "IEEE_802_15_4_ModSource::applySettings: Creating new lpf with taps " << settings.m_lpfTaps << " rfBW " << settings.m_rfBandwidth;
m_lowpass.create(settings.m_lpfTaps, m_channelSampleRate, settings.m_rfBandwidth / 2.0);
}
if ((settings.m_spectrumRate != m_settings.m_spectrumRate) || force)
{
m_interpolatorDistanceRemain = 0;
m_interpolatorConsumed = false;
m_interpolatorDistance = (Real) m_channelSampleRate / (Real) settings.m_spectrumRate;
m_interpolator.create(48, settings.m_spectrumRate, settings.m_spectrumRate / 2.2, 3.0);
}
if (settings.m_modulation == IEEE_802_15_4_ModSettings::BPSK)
{
m_chipsPerSymbol = 15;
m_bitsPerSymbol = 1;
}
else
{
m_bitsPerSymbol = 4;
m_chipsPerSymbol = settings.m_subGHzBand ? 16 : 32;
}
m_chipRate = settings.m_bitRate * m_chipsPerSymbol / m_bitsPerSymbol;
m_samplesPerChip = m_channelSampleRate / m_chipRate;
qDebug() << "m_samplesPerChip: " << m_samplesPerChip;
if (m_channelSampleRate % m_chipRate != 0) {
qCritical("Sample rate is not an integer multiple of the chip rate");
}
if (m_samplesPerChip <= 2) {
qCritical("Sample rate is not a high enough multiple of the chip rate");
}
if ((settings.m_pulseShaping != m_settings.m_pulseShaping)
|| (settings.m_beta != m_settings.m_beta)
|| (settings.m_symbolSpan != m_settings.m_symbolSpan)
|| (settings.m_bitRate != m_settings.m_bitRate)
|| (settings.m_modulation != m_settings.m_modulation)
|| (settings.m_subGHzBand != m_settings.m_subGHzBand)
|| force)
{
qDebug() << "IEEE_802_15_4_ModSource::applySettings: Recreating pulse shaping filter: "
<< " pulseShaping: " << m_settings.m_pulseShaping
<< " beta: " << settings.m_beta
<< " symbolSpan: " << settings.m_symbolSpan
<< " channelSampleRate:" << m_channelSampleRate
<< " subGHzBand: " << settings.m_subGHzBand
<< " bitRate:" << settings.m_bitRate
<< " chipRate:" << m_chipRate;
if (settings.m_pulseShaping == IEEE_802_15_4_ModSettings::RC)
{
m_pulseShapeI.create(settings.m_beta, m_settings.m_symbolSpan, m_channelSampleRate/m_chipRate, true);
m_pulseShapeQ.create(settings.m_beta, m_settings.m_symbolSpan, m_channelSampleRate/m_chipRate, true);
}
else
{
createHalfSine(m_channelSampleRate, m_chipRate);
}
}
if ((settings.m_polynomial != m_settings.m_polynomial) || force) {
m_scrambler.setPolynomial(settings.m_polynomial);
}
m_settings = settings;
// Precalculate linear gain to save doing it in the loop
m_linearGain = powf(10.0f, m_settings.m_gain/20.0f);
}
void IEEE_802_15_4_ModSource::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "IEEE_802_15_4_ModSource::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset
<< " rfBandwidth: " << m_settings.m_rfBandwidth
<< " spectrumRate: " << m_settings.m_spectrumRate;
if ((channelFrequencyOffset != m_channelFrequencyOffset)
|| (channelSampleRate != m_channelSampleRate) || force)
{
m_carrierNco.setFreq(channelFrequencyOffset, channelSampleRate);
}
if ((m_channelSampleRate != channelSampleRate) || force)
{
qDebug() << "IEEE_802_15_4_ModSource::applyChannelSettings: Recreating filters";
m_lowpass.create(m_settings.m_lpfTaps, channelSampleRate, m_settings.m_rfBandwidth / 2.0);
qDebug() << "IEEE_802_15_4_ModSource::applyChannelSettings: Recreating pulse shaping filter: "
<< " pulseShaping: " << m_settings.m_pulseShaping
<< " beta: " << m_settings.m_beta
<< " symbolSpan: " << m_settings.m_symbolSpan
<< " channelSampleRate:" << channelSampleRate
<< " subGHzBand: " << m_settings.m_subGHzBand
<< " bitRate:" << m_settings.m_bitRate
<< " chipRate:" << m_chipRate;
if (m_settings.m_pulseShaping == IEEE_802_15_4_ModSettings::RC)
{
m_pulseShapeI.create(m_settings.m_beta, m_settings.m_symbolSpan, channelSampleRate/m_chipRate, true);
m_pulseShapeQ.create(m_settings.m_beta, m_settings.m_symbolSpan, channelSampleRate/m_chipRate, true);
}
else
createHalfSine(channelSampleRate, m_chipRate);
}
if ((m_channelSampleRate != channelSampleRate) || (m_spectrumRate != m_settings.m_spectrumRate) || force)
{
m_interpolatorDistanceRemain = 0;
m_interpolatorConsumed = false;
m_interpolatorDistance = (Real) channelSampleRate / (Real) m_settings.m_spectrumRate;
m_interpolator.create(48, m_settings.m_spectrumRate, m_settings.m_spectrumRate / 2.2, 3.0);
}
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
m_spectrumRate = m_settings.m_spectrumRate;
m_samplesPerChip = m_channelSampleRate / m_chipRate;
qDebug() << "m_samplesPerChip: " << m_samplesPerChip;
}
// Half-sine pulse shaping for O-QPSK
void IEEE_802_15_4_ModSource::createHalfSine(int sampleRate, int chipRate)
{
int samplesPerChip = sampleRate / chipRate;
double tc = 1.0 / chipRate;
delete[] m_sinLUT;
m_sinLUT = new double[2*samplesPerChip];
for (int i = 0; i < 2*samplesPerChip; i++)
{
double t=i/(double)sampleRate;
m_sinLUT[i] = sin(M_PI*t/(2.0*tc));
}
}
bool IEEE_802_15_4_ModSource::chipsValid()
{
return (m_bitCount > 0) || (m_chipIdx < m_chipsPerSymbol);
}
// Symbol-to-chip mapping
int IEEE_802_15_4_ModSource::getChip()
{
int chip = 0;
if (m_chipIdx == 0)
m_symbol = getSymbol();
if (m_settings.m_bitRate <= 40000)
{
static const int chipsBpsk[2][15] = {
{1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0},
{0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1}
};
chip = chipsBpsk[m_symbol][m_chipIdx];
}
else if (m_settings.m_subGHzBand)
{
static const int chipsSubGHzOqpsk[16][16] = {
{0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1},
{0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1},
{0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0},
{1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0},
{0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0},
{1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1},
{1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1},
{1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0},
{0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0},
{0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1},
{1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1},
{0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1},
{1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0},
{1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0},
{1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1},
};
chip = chipsSubGHzOqpsk[m_symbol][m_chipIdx];
}
else
{
static const int chipsOqpsk[16][32] = {
{1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0},
{1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0},
{0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0},
{0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1},
{0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1},
{0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0},
{1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1},
{1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1},
{1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1},
{1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1},
{0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1},
{0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0},
{0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1},
{1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0},
{1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0}
};
chip = chipsOqpsk[m_symbol][m_chipIdx];
}
m_chipIdx++;
if (m_chipIdx >= m_chipsPerSymbol)
m_chipIdx = 0;
return chip;
}
int IEEE_802_15_4_ModSource::getSymbol()
{
int symbol;
if (m_bitCount > 0)
{
int mask = m_bitsPerSymbol == 1 ? 0x1 : 0xf;
symbol = (m_bits[m_byteIdx] >> m_bitIdx) & mask;
m_bitIdx += m_bitsPerSymbol;
m_bitCount -= m_bitsPerSymbol;
if (m_bitIdx == 8)
{
m_byteIdx++;
m_bitIdx = 0;
}
if (m_settings.m_modulation == IEEE_802_15_4_ModSettings::BPSK)
{
// Differential encoding
symbol = symbol ^ m_diffBit;
m_diffBit = symbol;
}
}
else
symbol = 0;
return symbol;
}
void IEEE_802_15_4_ModSource::initTX()
{
m_sampleIdx = 0;
m_chipOdd = false;
m_chips[0] = 0;
m_chips[1] = 0;
m_chipIdx = 0;
m_diffBit = 0;
m_byteIdx = 0;
m_bitIdx = 0;
m_bitCount = m_bitCountTotal; // Reset to allow retransmission
m_symbol = 0;
if (m_settings.m_rampUpBits == 0)
{
m_state = tx;
m_pow = 0.0f;
}
else
{
m_state = ramp_up;
m_pow = -(Real)m_settings.m_rampRange;
m_powRamp = m_settings.m_rampRange/(m_settings.m_rampUpBits * (Real)m_samplesPerChip);
}
m_scrambler.init();
}
void IEEE_802_15_4_ModSource::convert(const QString dataStr, QByteArray& data)
{
// Convert string containing space separated list of hex values to binary
QStringList list = dataStr.split(" ");
for (int i = 0; i < list.size(); i++) {
data.append(list[i].toInt(nullptr, 16));
}
}
void IEEE_802_15_4_ModSource::addTxFrame(const QString& data)
{
QByteArray ba;
convert(data.trimmed(), ba);
addTxFrame(ba);
}
void IEEE_802_15_4_ModSource::addTxFrame(const QByteArray& data)
{
uint8_t *crcStart;
uint8_t *p;
uint8_t *pLength;
crc16itut crc;
uint16_t crcValue;
// Create PHY frame
p = m_bits;
// Preamble
*p++ = 0x00;
*p++ = 0x00;
*p++ = 0x00;
*p++ = 0x00;
// SFD - start of frame delimiter
*p++ = 0xa7;
// PHR - length
pLength = p;
*p++ = 0;
// PHY payload
crcStart = p;
// Data
std::copy(data.data(), data.data() + data.length(), p);
p += data.length();
// MAC FCS
crc.calculate(crcStart, p-crcStart);
crcValue = crc.get();
*p++ = crcValue & 0xff;
*p++ = (crcValue >> 8);
// Update length
*pLength = p - pLength - 1;
// Extra 0 to account for pulse shaping filter delay.
// Should probably just be a few chips
*p++ = 0x00;
// Dump frame
QByteArray qb((char *)m_bits, p-m_bits);
// Save number of bits in frame
m_bitCount = m_bitCountTotal = (p-&m_bits[0]) * 8;
m_frameRepeatCount = m_settings.m_repeatCount;
initTX();
if (m_settings.m_writeToFile) {
m_basebandFile.open("IEEE_802_15_4_Mod.csv", std::ofstream::out);
} else if (m_basebandFile.is_open()) {
m_basebandFile.close();
}
}
void IEEE_802_15_4_ModSource::handleInputMessages()
{
Message* message;
while ((message = m_inputMessageQueue.pop()) != nullptr)
{
if (handleMessage(*message)) {
delete message;
}
}
}
bool IEEE_802_15_4_ModSource::handleMessage(const Message& msg)
{
if (MsgOpenUDP::match(msg))
{
qDebug("IEEE_802_15_4_ModSource::handleMessage: MsgOpenUDP");
const MsgOpenUDP& cmd = (const MsgOpenUDP&) msg;
openUDP(cmd.getUDPAddress(), cmd.getUDPPort());
return true;
}
else if (MsgCloseUDP::match(msg))
{
qDebug("IEEE_802_15_4_ModSource::handleMessage: MsgCloseUDP");
closeUDP();
return true;
}
else
{
return false;
}
}
void IEEE_802_15_4_ModSource::closeUDP()
{
if (m_udpSocket != nullptr)
{
disconnect(m_udpSocket, &QUdpSocket::readyRead, this, &IEEE_802_15_4_ModSource::udpRx);
delete m_udpSocket;
m_udpSocket = nullptr;
}
}
void IEEE_802_15_4_ModSource::openUDP(const QString& udpAddress, uint16_t udpPort)
{
m_udpSocket = new QUdpSocket();
if (m_udpSocket->bind(QHostAddress(udpAddress), udpPort))
{
connect(m_udpSocket, &QUdpSocket::readyRead, this, &IEEE_802_15_4_ModSource::udpRx);
qDebug() << "IEEE_802_15_4_ModSource::openUDP: Listening for packets on "
<< udpAddress << ":"
<< udpPort;
m_udpSocket->setSocketOption(QAbstractSocket::ReceiveBufferSizeSocketOption, IEEE_802_15_4_ModSettings::m_udpBufferSize);
}
else
{
qCritical() << "IEEE_802_15_4_Mod::openUDP: Failed to bind to port "
<< udpAddress << ":"
<< udpPort
<< ". Error: " << m_udpSocket->error();
}
}
void IEEE_802_15_4_ModSource::udpRx()
{
while (m_udpSocket->hasPendingDatagrams())
{
QNetworkDatagram datagram = m_udpSocket->receiveDatagram();
QByteArray data = datagram.data();
qDebug() << "IEEE_802_15_4_ModSource::udpRx: " << data.toHex();
if (m_settings.m_udpBytesFormat)
{
addTxFrame(data);
}
else
{
QString string = data.toHex(' ');
addTxFrame(string);
}
}
}