1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-17 22:01:45 -05:00
sdrangel/plugins/channelrx/demodatv/atvdemod.h

680 lines
22 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017 F4HKW //
// for F4EXB / SDRAngel //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef INCLUDE_ATVDEMOD_H
#define INCLUDE_ATVDEMOD_H
#include <QMutex>
#include <QElapsedTimer>
#include <vector>
#include "dsp/basebandsamplesink.h"
#include "dsp/devicesamplesource.h"
#include "dsp/dspcommands.h"
#include "dsp/downchannelizer.h"
#include "dsp/nco.h"
#include "dsp/interpolator.h"
#include "dsp/movingaverage.h"
#include "dsp/fftfilt.h"
#include "dsp/agc.h"
#include "dsp/phaselock.h"
#include "dsp/recursivefilters.h"
#include "dsp/phasediscri.h"
#include "audio/audiofifo.h"
#include "util/message.h"
#include "atvscreen.h"
class ATVDemod : public BasebandSampleSink
{
Q_OBJECT
public:
enum ATVStd
{
ATVStdPAL625,
ATVStdPAL525,
ATVStd405,
ATVStdShortInterleaved,
ATVStdShort,
ATVStdHSkip
};
enum ATVModulation {
ATV_FM1, //!< Classical frequency modulation with discriminator #1
ATV_FM2, //!< Classical frequency modulation with discriminator #2
ATV_FM3, //!< Classical frequency modulation with phase derivative discriminator
ATV_AM, //!< Classical amplitude modulation
ATV_USB, //!< AM with vestigial lower side band (main signal is in the upper side)
ATV_LSB //!< AM with vestigial upper side band (main signal is in the lower side)
};
struct ATVConfig
{
int m_intSampleRate;
ATVStd m_enmATVStandard;
int m_intNumberOfLines;
float m_fltLineDuration;
float m_fltTopDuration;
float m_fltFramePerS;
float m_fltRatioOfRowsToDisplay;
float m_fltVoltLevelSynchroTop;
float m_fltVoltLevelSynchroBlack;
bool m_blnHSync;
bool m_blnVSync;
bool m_blnInvertVideo;
int m_intVideoTabIndex;
ATVConfig() :
m_intSampleRate(0),
m_enmATVStandard(ATVStdPAL625),
m_intNumberOfLines(625),
m_fltLineDuration(0.0f),
m_fltTopDuration(0.0f),
m_fltFramePerS(25.0f),
m_fltRatioOfRowsToDisplay(0.0f),
m_fltVoltLevelSynchroTop(0.0f),
m_fltVoltLevelSynchroBlack(1.0f),
m_blnHSync(false),
m_blnVSync(false),
m_blnInvertVideo(false),
m_intVideoTabIndex(0)
{
}
};
struct ATVRFConfig
{
int64_t m_intFrequencyOffset;
ATVModulation m_enmModulation;
float m_fltRFBandwidth;
float m_fltRFOppBandwidth;
bool m_blnFFTFiltering;
bool m_blndecimatorEnable;
float m_fltBFOFrequency;
float m_fmDeviation;
ATVRFConfig() :
m_intFrequencyOffset(0),
m_enmModulation(ATV_FM1),
m_fltRFBandwidth(0),
m_fltRFOppBandwidth(0),
m_blnFFTFiltering(false),
m_blndecimatorEnable(false),
m_fltBFOFrequency(0.0f),
m_fmDeviation(1.0f)
{
}
};
class MsgReportEffectiveSampleRate : public Message
{
MESSAGE_CLASS_DECLARATION
public:
int getSampleRate() const { return m_sampleRate; }
int getNbPointsPerLine() const { return m_nbPointsPerLine; }
static MsgReportEffectiveSampleRate* create(int sampleRate, int nbPointsPerLine)
{
return new MsgReportEffectiveSampleRate(sampleRate, nbPointsPerLine);
}
protected:
int m_sampleRate;
int m_nbPointsPerLine;
MsgReportEffectiveSampleRate(int sampleRate, int nbPointsPerLine) :
Message(),
m_sampleRate(sampleRate),
m_nbPointsPerLine(nbPointsPerLine)
{ }
};
ATVDemod(BasebandSampleSink* objScopeSink);
~ATVDemod();
void configure(MessageQueue* objMessageQueue,
float fltLineDurationUs,
float fltTopDurationUs,
float fltFramePerS,
ATVStd enmATVStandard,
int intNumberOfLines,
float fltRatioOfRowsToDisplay,
float fltVoltLevelSynchroTop,
float fltVoltLevelSynchroBlack,
bool blnHSync,
bool blnVSync,
bool blnInvertVideo,
int intVideoTabIndex);
void configureRF(MessageQueue* objMessageQueue,
ATVModulation enmModulation,
float fltRFBandwidth,
float fltRFOppBandwidth,
bool blnFFTFiltering,
bool blndecimatorEnable,
float fltBFOFrequency,
float fmDeviation);
virtual void feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool po);
virtual void start();
virtual void stop();
virtual bool handleMessage(const Message& cmd);
void setATVScreen(ATVScreen *objScreen);
int getSampleRate();
int getEffectiveSampleRate();
double getMagSq() const { return m_objMagSqAverage.average(); } //!< Beware this is scaled to 2^30
bool getBFOLocked();
private:
struct ATVConfigPrivate
{
int m_intTVSampleRate;
int m_intNumberSamplePerLine;
ATVConfigPrivate() :
m_intTVSampleRate(0),
m_intNumberSamplePerLine(0)
{}
};
class MsgConfigureATVDemod : public Message
{
MESSAGE_CLASS_DECLARATION
public:
static MsgConfigureATVDemod* create(
float fltLineDurationUs,
float fltTopDurationUs,
float fltFramePerS,
ATVStd enmATVStandard,
int intNumberOfLines,
float fltRatioOfRowsToDisplay,
float fltVoltLevelSynchroTop,
float fltVoltLevelSynchroBlack,
bool blnHSync,
bool blnVSync,
bool blnInvertVideo,
int intVideoTabIndex)
{
return new MsgConfigureATVDemod(
fltLineDurationUs,
fltTopDurationUs,
fltFramePerS,
enmATVStandard,
intNumberOfLines,
fltRatioOfRowsToDisplay,
fltVoltLevelSynchroTop,
fltVoltLevelSynchroBlack,
blnHSync,
blnVSync,
blnInvertVideo,
intVideoTabIndex);
}
ATVConfig m_objMsgConfig;
private:
MsgConfigureATVDemod(
float fltLineDurationUs,
float fltTopDurationUs,
float fltFramePerS,
ATVStd enmATVStandard,
int intNumberOfLines,
float flatRatioOfRowsToDisplay,
float fltVoltLevelSynchroTop,
float fltVoltLevelSynchroBlack,
bool blnHSync,
bool blnVSync,
bool blnInvertVideo,
int intVideoTabIndex) :
Message()
{
m_objMsgConfig.m_fltVoltLevelSynchroBlack = fltVoltLevelSynchroBlack;
m_objMsgConfig.m_fltVoltLevelSynchroTop = fltVoltLevelSynchroTop;
m_objMsgConfig.m_fltFramePerS = fltFramePerS;
m_objMsgConfig.m_enmATVStandard = enmATVStandard;
m_objMsgConfig.m_intNumberOfLines = intNumberOfLines;
m_objMsgConfig.m_fltLineDuration = fltLineDurationUs;
m_objMsgConfig.m_fltTopDuration = fltTopDurationUs;
m_objMsgConfig.m_fltRatioOfRowsToDisplay = flatRatioOfRowsToDisplay;
m_objMsgConfig.m_blnHSync = blnHSync;
m_objMsgConfig.m_blnVSync = blnVSync;
m_objMsgConfig.m_blnInvertVideo = blnInvertVideo;
m_objMsgConfig.m_intVideoTabIndex = intVideoTabIndex;
}
};
class MsgConfigureRFATVDemod : public Message
{
MESSAGE_CLASS_DECLARATION
public:
static MsgConfigureRFATVDemod* create(
ATVModulation enmModulation,
float fltRFBandwidth,
float fltRFOppBandwidth,
bool blnFFTFiltering,
bool blndecimatorEnable,
int intBFOFrequency,
float fmDeviation)
{
return new MsgConfigureRFATVDemod(
enmModulation,
fltRFBandwidth,
fltRFOppBandwidth,
blnFFTFiltering,
blndecimatorEnable,
intBFOFrequency,
fmDeviation);
}
ATVRFConfig m_objMsgConfig;
private:
MsgConfigureRFATVDemod(
ATVModulation enmModulation,
float fltRFBandwidth,
float fltRFOppBandwidth,
bool blnFFTFiltering,
bool blndecimatorEnable,
float fltBFOFrequency,
float fmDeviation) :
Message()
{
m_objMsgConfig.m_enmModulation = enmModulation;
m_objMsgConfig.m_fltRFBandwidth = fltRFBandwidth;
m_objMsgConfig.m_fltRFOppBandwidth = fltRFOppBandwidth;
m_objMsgConfig.m_blnFFTFiltering = blnFFTFiltering;
m_objMsgConfig.m_blndecimatorEnable = blndecimatorEnable;
m_objMsgConfig.m_fltBFOFrequency = fltBFOFrequency;
m_objMsgConfig.m_fmDeviation = fmDeviation;
}
};
/**
* Exponential average using integers and alpha as the inverse of a power of two
*/
class AvgExpInt
{
public:
AvgExpInt(int log2Alpha) : m_log2Alpha(log2Alpha), m_m1(0), m_start(true) {}
void reset() { m_start = true; }
int run(int m0)
{
if (m_start)
{
m_m1 = m0;
m_start = false;
return m0;
}
else
{
m_m1 = m0 + m_m1 - (m_m1>>m_log2Alpha);
return m_m1>>m_log2Alpha;
}
}
private:
int m_log2Alpha;
int m_m1;
bool m_start;
};
//*************** SCOPE ***************
BasebandSampleSink* m_objScopeSink;
SampleVector m_objScopeSampleBuffer;
//*************** ATV PARAMETERS ***************
ATVScreen * m_objRegisteredATVScreen;
//int m_intNumberSamplePerLine;
int m_intNumberSamplePerTop;
int m_intNumberOfLines;
int m_intNumberOfSyncLines; //!< this is the number of non displayable lines at the start of a frame. First displayable row comes next.
int m_intNumberOfBlackLines; //!< this is the total number of lines not part of the image and is used for vertical screen size
int m_intNumberOfEqLines; //!< number of equalizing lines both whole and partial
int m_intNumberSamplePerLineSignals; //!< number of samples in the non image part of the line (signals)
int m_intNumberSaplesPerHSync; //!< number of samples per horizontal synchronization pattern (pulse + back porch)
bool m_interleaved; //!< interleaved image
//*************** PROCESSING ***************
int m_intImageIndex;
int m_intSynchroPoints;
bool m_blnSynchroDetected;
bool m_blnVerticalSynchroDetected;
float m_fltAmpLineAverage;
float m_fltEffMin;
float m_fltEffMax;
float m_fltAmpMin;
float m_fltAmpMax;
float m_fltAmpDelta;
float m_fltBufferI[6];
float m_fltBufferQ[6];
int m_intColIndex;
int m_intSampleIndex;
int m_intRowIndex;
int m_intLineIndex;
AvgExpInt m_objAvgColIndex;
int m_intAvgColIndex;
SampleVector m_sampleBuffer;
//*************** RF ***************
MovingAverage<double> m_objMagSqAverage;
NCO m_nco;
SimplePhaseLock m_bfoPLL;
SecondOrderRecursiveFilter m_bfoFilter;
// Interpolator group for decimation and/or double sideband RF filtering
Interpolator m_interpolator;
Real m_interpolatorDistance;
Real m_interpolatorDistanceRemain;
// Used for vestigial SSB with asymmetrical filtering (needs double sideband scheme)
fftfilt* m_DSBFilter;
Complex* m_DSBFilterBuffer;
int m_DSBFilterBufferIndex;
static const int m_ssbFftLen;
// Used for FM
PhaseDiscriminators m_objPhaseDiscri;
//QElapsedTimer m_objTimer;
ATVConfig m_objRunning;
ATVConfig m_objConfig;
ATVRFConfig m_objRFRunning;
ATVRFConfig m_objRFConfig;
ATVConfigPrivate m_objRunningPrivate;
ATVConfigPrivate m_objConfigPrivate;
QMutex m_objSettingsMutex;
void applySettings();
void applyStandard();
void demod(Complex& c);
static float getRFBandwidthDivisor(ATVModulation modulation);
inline void processHSkip(float& fltVal, int& intVal)
{
m_objRegisteredATVScreen->setDataColor(m_intColIndex - m_intNumberSaplesPerHSync + m_intNumberSamplePerTop, intVal, intVal, intVal);
// Horizontal Synchro detection
// Floor Detection 0
if (fltVal < m_objRunning.m_fltVoltLevelSynchroTop)
{
m_intSynchroPoints++;
}
// Black detection 0.3
else if (fltVal > m_objRunning.m_fltVoltLevelSynchroBlack)
{
m_intSynchroPoints = 0;
}
// sync pulse
m_blnSynchroDetected = (m_intSynchroPoints == m_intNumberSamplePerTop);
if (m_blnSynchroDetected)
{
if (m_intSampleIndex >= (3 * m_objRunningPrivate.m_intNumberSamplePerLine)/2) // first after skip
{
//qDebug("VSync: %d %d %d", m_intColIndex, m_intSampleIndex, m_intLineIndex);
m_intAvgColIndex = m_intColIndex;
m_objRegisteredATVScreen->renderImage(0);
m_intImageIndex++;
m_intLineIndex = 0;
m_intRowIndex = 0;
}
m_intSampleIndex = 0;
}
else
{
m_intSampleIndex++;
}
if (m_intColIndex < m_objRunningPrivate.m_intNumberSamplePerLine + m_intNumberSamplePerTop - 1)
{
m_intColIndex++;
}
else
{
if (m_objRunning.m_blnHSync && (m_intLineIndex == 0))
{
//qDebug("HCorr: %d", m_intAvgColIndex);
m_intColIndex = m_intNumberSamplePerTop + (m_objRunningPrivate.m_intNumberSamplePerLine - m_intAvgColIndex)/2; // amortizing factor 1/2
}
else
{
m_intColIndex = m_intNumberSamplePerTop;
}
if ((m_objRFRunning.m_enmModulation == ATV_AM)
|| (m_objRFRunning.m_enmModulation == ATV_USB)
|| (m_objRFRunning.m_enmModulation == ATV_LSB))
{
m_fltAmpMin = m_fltEffMin;
m_fltAmpMax = m_fltEffMax;
m_fltAmpDelta = m_fltEffMax-m_fltEffMin;
if(m_fltAmpDelta<=0.0)
{
m_fltAmpDelta=1.0f;
}
//Reset extrema
m_fltEffMin = 2000000.0f;
m_fltEffMax = -2000000.0f;
}
m_objRegisteredATVScreen->selectRow(m_intRowIndex);
m_intLineIndex++;
m_intRowIndex++;
}
}
inline void processClassic(float& fltVal, int& intVal)
{
int intSynchroTimeSamples= (3 * m_objRunningPrivate.m_intNumberSamplePerLine)/4;
float fltSynchroTrameLevel = 0.5f*((float)intSynchroTimeSamples) * m_objRunning.m_fltVoltLevelSynchroBlack;
// Horizontal Synchro detection
// Floor Detection 0
if (fltVal < m_objRunning.m_fltVoltLevelSynchroTop)
{
m_intSynchroPoints++;
}
// Black detection 0.3
else if (fltVal > m_objRunning.m_fltVoltLevelSynchroBlack)
{
m_intSynchroPoints = 0;
}
m_blnSynchroDetected = (m_intSynchroPoints == m_intNumberSamplePerTop);
//Horizontal Synchro processing
bool blnNewLine = false;
if (m_blnSynchroDetected)
{
m_intAvgColIndex = m_intSampleIndex - m_intColIndex - (m_intColIndex < m_objRunningPrivate.m_intNumberSamplePerLine/2 ? 150 : 0);
//qDebug("HSync: %d %d %d", m_intSampleIndex, m_intColIndex, m_intAvgColIndex);
m_intSampleIndex = 0;
}
else
{
m_intSampleIndex++;
}
if (!m_objRunning.m_blnHSync && (m_intColIndex >= m_objRunningPrivate.m_intNumberSamplePerLine)) // H Sync not active
{
m_intColIndex = 0;
blnNewLine = true;
}
else if (m_intColIndex >= m_objRunningPrivate.m_intNumberSamplePerLine + m_intNumberSamplePerTop) // No valid H sync
{
if (m_objRunning.m_blnHSync && (m_intLineIndex == 0))
{
//qDebug("HSync: %d %d", m_intColIndex, m_intAvgColIndex);
m_intColIndex = m_intNumberSamplePerTop + m_intAvgColIndex/4; // amortizing 1/4
}
else
{
m_intColIndex = m_intNumberSamplePerTop;
}
blnNewLine = true;
}
if (blnNewLine)
{
if ((m_objRFRunning.m_enmModulation == ATV_AM)
|| (m_objRFRunning.m_enmModulation == ATV_USB)
|| (m_objRFRunning.m_enmModulation == ATV_LSB))
{
m_fltAmpMin = m_fltEffMin;
m_fltAmpMax = m_fltEffMax;
m_fltAmpDelta = m_fltEffMax-m_fltEffMin;
if(m_fltAmpDelta<=0.0)
{
m_fltAmpDelta=1.0f;
}
//Reset extrema
m_fltEffMin = 2000000.0f;
m_fltEffMax = -2000000.0f;
}
m_fltAmpLineAverage=0.0f;
//New line + Interleaving
m_intRowIndex += m_interleaved ? 2 : 1;
if (m_intRowIndex < m_intNumberOfLines)
{
m_objRegisteredATVScreen->selectRow(m_intRowIndex - m_intNumberOfSyncLines);
}
m_intLineIndex++;
}
// Filling pixels
// +4 is to compensate shift due to hsync amortizing factor of 1/4
m_objRegisteredATVScreen->setDataColor(m_intColIndex - m_intNumberSaplesPerHSync + m_intNumberSamplePerTop + 4, intVal, intVal, intVal);
m_intColIndex++;
// Vertical sync and image rendering
if ((m_objRunning.m_blnVSync) && (m_intLineIndex < m_intNumberOfLines)) // VSync activated and lines in range
{
if (m_intColIndex >= intSynchroTimeSamples)
{
if (m_fltAmpLineAverage <= fltSynchroTrameLevel)
{
m_fltAmpLineAverage = 0.0f;
if (!m_blnVerticalSynchroDetected) // not yet
{
m_blnVerticalSynchroDetected = true; // prevent repetition
if ((m_intLineIndex % 2 == 0) || !m_interleaved) // even => odd image
{
m_objRegisteredATVScreen->renderImage(0);
m_intRowIndex = 1;
}
else
{
m_intRowIndex = 0;
}
m_objRegisteredATVScreen->selectRow(m_intRowIndex - m_intNumberOfSyncLines);
m_intLineIndex = 0;
m_intImageIndex++;
}
}
else
{
m_blnVerticalSynchroDetected = false; // reset
}
}
}
else // no VSync or lines out of range => arbitrary
{
if (m_intLineIndex >= m_intNumberOfLines/2)
{
if (m_intImageIndex % 2 == 1) // odd image
{
m_objRegisteredATVScreen->renderImage(0);
if (m_objRFRunning.m_enmModulation == ATV_AM)
{
m_fltAmpMin = m_fltEffMin;
m_fltAmpMax = m_fltEffMax;
m_fltAmpDelta = m_fltEffMax-m_fltEffMin;
if(m_fltAmpDelta<=0.0)
{
m_fltAmpDelta=1.0f;
}
//Reset extrema
m_fltEffMin = 2000000.0f;
m_fltEffMax = -2000000.0f;
}
m_intRowIndex = 1;
}
else
{
m_intRowIndex = 0;
}
m_objRegisteredATVScreen->selectRow(m_intRowIndex - m_intNumberOfSyncLines);
m_intLineIndex = 0;
m_intImageIndex++;
}
}
}
};
#endif // INCLUDE_ATVDEMOD_H