1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-05 00:11:16 -05:00
sdrangel/ft8/ft8stats.cpp

201 lines
5.2 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2024 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// //
// This is the code from ft8mon: https://github.com/rtmrtmrtmrtm/ft8mon //
// reformatted and adapted to Qt and SDRangel context //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <math.h>
#include <algorithm>
#include "ft8stats.h"
namespace FT8 {
Stats::Stats(int how, float log_tail, float log_rate) :
sum_(0),
finalized_(false),
how_(how),
log_tail_(log_tail),
log_rate_(log_rate)
{}
void Stats::add(float x)
{
a_.push_back(x);
sum_ += x;
finalized_ = false;
}
void Stats::finalize()
{
finalized_ = true;
int n = a_.size();
mean_ = sum_ / n;
float var = 0;
float bsum = 0;
for (int i = 0; i < n; i++)
{
float y = a_[i] - mean_;
var += y * y;
bsum += fabs(y);
}
var /= n;
stddev_ = sqrt(var);
b_ = bsum / n;
// prepare for binary search to find where values lie
// in the distribution.
if (how_ != 0 && how_ != 5) {
std::sort(a_.begin(), a_.end());
}
}
float Stats::mean()
{
if (!finalized_) {
finalize();
}
return mean_;
}
float Stats::stddev()
{
if (!finalized_) {
finalize();
}
return stddev_;
}
// fraction of distribution that's less than x.
// assumes normal distribution.
// this is PHI(x), or the CDF at x,
// or the integral from -infinity
// to x of the PDF.
float Stats::gaussian_problt(float x)
{
float SDs = (x - mean()) / stddev();
float frac = 0.5 * (1.0 + erf(SDs / sqrt(2.0)));
return frac;
}
// https://en.wikipedia.org/wiki/Laplace_distribution
// m and b from page 116 of Mark Owen's Practical Signal Processing.
float Stats::laplace_problt(float x)
{
float m = mean();
float cdf;
if (x < m) {
cdf = 0.5 * exp((x - m) / b_);
} else {
cdf = 1.0 - 0.5 * exp(-(x - m) / b_);
}
return cdf;
}
// look into the actual distribution.
float Stats::problt(float x)
{
if (!finalized_) {
finalize();
}
if (how_ == 0) {
return gaussian_problt(x);
}
if (how_ == 5) {
return laplace_problt(x);
}
// binary search.
auto it = std::lower_bound(a_.begin(), a_.end(), x);
int i = it - a_.begin();
int n = a_.size();
if (how_ == 1)
{
// index into the distribution.
// works poorly for values that are off the ends
// of the distribution, since those are all
// mapped to 0.0 or 1.0, regardless of magnitude.
return i / (float)n;
}
if (how_ == 2)
{
// use a kind of logistic regression for
// values near the edges of the distribution.
if (i < log_tail_ * n)
{
float x0 = a_[(int)(log_tail_ * n)];
float y = 1.0 / (1.0 + exp(-log_rate_ * (x - x0)));
// y is 0..0.5
y /= 5;
return y;
}
else if (i > (1 - log_tail_) * n)
{
float x0 = a_[(int)((1 - log_tail_) * n)];
float y = 1.0 / (1.0 + exp(-log_rate_ * (x - x0)));
// y is 0.5..1
// we want (1-log_tail)..1
y -= 0.5;
y *= 2;
y *= log_tail_;
y += (1 - log_tail_);
return y;
}
else
{
return i / (float)n;
}
}
if (how_ == 3)
{
// gaussian for values near the edge of the distribution.
if (i < log_tail_ * n) {
return gaussian_problt(x);
} else if (i > (1 - log_tail_) * n) {
return gaussian_problt(x);
} else {
return i / (float)n;
}
}
if (how_ == 4)
{
// gaussian for values outside the distribution.
if (x < a_[0] || x > a_.back()) {
return gaussian_problt(x);
} else {
return i / (float)n;
}
}
return 0;
}
} // namespace FT8