1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-30 03:38:55 -05:00
sdrangel/plugins/channelrx/demoddatv/leansdr/math.h
2020-11-04 23:05:41 +01:00

198 lines
4.7 KiB
C++

// This file is part of LeanSDR Copyright (C) 2016-2018 <pabr@pabr.org>.
// See the toplevel README for more information.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#ifndef LEANSDR_MATH_H
#define LEANSDR_MATH_H
#include <cmath>
#include <stdint.h>
namespace leansdr
{
template <typename T>
struct complex
{
T re, im;
complex() {}
complex(T x) : re(x), im(0) {}
complex(T x, T y) : re(x), im(y) {}
inline void operator+=(const complex<T> &x)
{
re += x.re;
im += x.im;
}
inline void operator*=(const complex<T> &c)
{
T tre = re * c.re - im * c.im;
im = re * c.im + im * c.re;
re = tre;
}
inline void operator-=(const complex<T> &x)
{
re-=x.re;
im-=x.im;
}
inline void operator*=(const T &k)
{
re *= k;
im *= k;
}
};
template <typename T>
complex<T> operator+(const complex<T> &a, const complex<T> &b)
{
return complex<T>(a.re + b.re, a.im + b.im);
}
template<typename T>
complex<T> operator -(const complex<T> &a, const complex<T> &b) {
return complex<T>(a.re - b.re, a.im - b.im);
}
template <typename T>
complex<T> operator*(const complex<T> &a, const complex<T> &b)
{
return complex<T>(a.re * b.re - a.im * b.im, a.re * b.im + a.im * b.re);
}
template <typename T>
complex<T> operator*(const complex<T> &a, const T &k)
{
return complex<T>(a.re * k, a.im * k);
}
template <typename T>
complex<T> operator*(const T &k, const complex<T> &a)
{
return complex<T>(k * a.re, k * a.im);
}
template <typename T>
T dotprod(const T *u, const T *v, int n)
{
T acc = 0;
while (n--)
acc += (*u++) * (*v++);
return acc;
}
template <typename T>
inline T cnorm2(const complex<T> &u)
{
return u.re * u.re + u.im * u.im;
}
template <typename T>
T cnorm2(const complex<T> *p, int n)
{
T res = 0;
for (; n--; ++p)
res += cnorm2(*p);
return res;
}
// Return conj(u)*v
template <typename T>
inline complex<T> conjprod(const complex<T> &u, const complex<T> &v)
{
return complex<T>(u.re * v.re + u.im * v.im,
u.re * v.im - u.im * v.re);
}
// Return sum(conj(u[i])*v[i])
template <typename T>
complex<T> conjprod(const complex<T> *u, const complex<T> *v, int n)
{
complex<T> acc = 0;
while (n--)
acc += conjprod(*u++, *v++);
return acc;
}
// TBD Optimize with dedicated instructions
int hamming_weight(uint8_t x);
int hamming_weight(uint16_t x);
int hamming_weight(uint32_t x);
int hamming_weight(uint64_t x);
unsigned char parity(uint8_t x);
unsigned char parity(uint16_t x);
unsigned char parity(uint32_t x);
unsigned char parity(uint64_t x);
int log2i(uint64_t x);
// Pre-computed sin/cos for 16-bit angles
struct trig16
{
complex<float> lut[65536]; // TBD static and shared
trig16()
{
for (int a = 0; a < 65536; ++a)
{
float af = a * 2 * M_PI / 65536;
lut[a].re = cosf(af);
lut[a].im = sinf(af);
}
}
inline const complex<float> &expi(uint16_t a) const
{
return lut[a];
}
// a must fit in a int32_t, otherwise behaviour is undefined
inline const complex<float> &expi(float a) const
{
return expi((uint16_t)(int16_t)(int32_t)a);
}
};
// Modulo with signed result in [-m/2..m/2[
inline float fmodfs(float v, float m) {
v = fmodf(v, m);
return (v>=m/2) ? v-m : (v<-m/2) ? v+m : v;
}
// Simple statistics
template<typename T>
struct statistics {
statistics() { reset(); }
void reset() { vm1=vm2=0; count=0; vmin=vmax=99;/*comp warning*/ }
void add(const T &v) {
vm1 += v;
vm2 += v*v;
if ( count == 0 ) { vmin = vmax = v; }
else if ( v < vmin ) { vmin = v; }
else if ( v > vmax ) { vmax = v; }
++count;
}
T average() { return vm1 / count; }
T variance() { return vm2/count - (vm1/count)*(vm1/count); }
T stddev() { return gen_sqrt(variance()); }
T min() { return vmin; }
T max() { return vmax; }
private:
T vm1, vm2; // Moments
T vmin, vmax; // Range
int count; // Number of samples in vm1, vm2
}; // statistics
} // namespace leansdr
#endif // LEANSDR_MATH_H