1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-02 16:01:14 -04:00
sdrangel/sdrbase/dsp/upchannelizer.cpp
2016-10-17 08:58:49 +02:00

260 lines
8.8 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016 F4EXB //
// written by Edouard Griffiths //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <dsp/upchannelizer.h>
#include "dsp/inthalfbandfilter.h"
#include "dsp/dspcommands.h"
#include <QString>
#include <QDebug>
MESSAGE_CLASS_DEFINITION(UpChannelizer::MsgChannelizerNotification, Message)
UpChannelizer::UpChannelizer(BasebandSampleSource* sampleSource) :
m_sampleSource(sampleSource),
m_outputSampleRate(0),
m_requestedInputSampleRate(0),
m_requestedCenterFrequency(0),
m_currentInputSampleRate(0),
m_currentCenterFrequency(0)
{
QString name = "UpChannelizer(" + m_sampleSource->objectName() + ")";
setObjectName(name);
}
UpChannelizer::~UpChannelizer()
{
freeFilterChain();
}
void UpChannelizer::configure(MessageQueue* messageQueue, int sampleRate, int centerFrequency)
{
Message* cmd = new DSPConfigureChannelizer(sampleRate, centerFrequency);
messageQueue->push(cmd);
}
void UpChannelizer::pull(Sample& sample)
{
if(m_sampleSource == 0) {
m_sampleBuffer.clear();
return;
}
if (m_filterStages.size() == 0) // optimization when no downsampling is done anyway
{
m_sampleSource->pull(sample);
}
else
{
m_mutex.lock();
// TODO: handle multiple stages
FilterStages::iterator stage = m_filterStages.begin();
if ((*stage)->work(&m_sampleIn, &sample))
{
m_sampleSource->pull(m_sampleIn);
}
m_mutex.unlock();
}
}
void UpChannelizer::start()
{
if (m_sampleSource != 0)
{
qDebug() << "UpChannelizer::start: thread: " << thread()
<< " m_outputSampleRate: " << m_outputSampleRate
<< " m_requestedInputSampleRate: " << m_requestedInputSampleRate
<< " m_requestedCenterFrequency: " << m_requestedCenterFrequency;
m_sampleSource->start();
}
}
void UpChannelizer::stop()
{
if(m_sampleSource != 0)
m_sampleSource->stop();
}
bool UpChannelizer::handleMessage(const Message& cmd)
{
qDebug() << "UpChannelizer::handleMessage: " << cmd.getIdentifier();
// TODO: apply changes only if input sample rate or requested output sample rate change. Change of center frequency has no impact.
if (DSPSignalNotification::match(cmd))
{
DSPSignalNotification& notif = (DSPSignalNotification&) cmd;
m_outputSampleRate = notif.getSampleRate();
qDebug() << "UpChannelizer::handleMessage: DSPSignalNotification: m_outputSampleRate: " << m_outputSampleRate;
applyConfiguration();
if (m_sampleSource != 0)
{
m_sampleSource->handleMessage(notif);
}
emit outputSampleRateChanged();
return true;
}
else if (DSPConfigureChannelizer::match(cmd))
{
DSPConfigureChannelizer& chan = (DSPConfigureChannelizer&) cmd;
m_requestedInputSampleRate = chan.getSampleRate();
m_requestedCenterFrequency = chan.getCenterFrequency();
qDebug() << "UpChannelizer::handleMessage: DSPConfigureChannelizer:"
<< " m_requestedInputSampleRate: " << m_requestedInputSampleRate
<< " m_requestedCenterFrequency: " << m_requestedCenterFrequency;
applyConfiguration();
return true;
}
else
{
if (m_sampleSource != 0)
{
return m_sampleSource->handleMessage(cmd);
}
else
{
return false;
}
}
}
void UpChannelizer::applyConfiguration()
{
if (m_outputSampleRate == 0)
{
qDebug() << "UpChannelizer::applyConfiguration: m_outputSampleRate=0 aborting";
return;
}
m_mutex.lock();
freeFilterChain();
m_currentCenterFrequency = createFilterChain(
m_outputSampleRate / -2, m_outputSampleRate / 2,
m_requestedCenterFrequency - m_requestedInputSampleRate / 2, m_requestedCenterFrequency + m_requestedInputSampleRate / 2);
m_mutex.unlock();
m_currentInputSampleRate = m_outputSampleRate / (1 << m_filterStages.size());
qDebug() << "UpChannelizer::applyConfiguration in=" << m_outputSampleRate
<< ", req=" << m_requestedInputSampleRate
<< ", out=" << m_requestedInputSampleRate
<< ", fc=" << m_currentCenterFrequency;
if (m_sampleSource != 0)
{
MsgChannelizerNotification notif(m_currentInputSampleRate, m_currentCenterFrequency);
m_sampleSource->handleMessage(notif);
}
}
UpChannelizer::FilterStage::FilterStage(Mode mode) :
m_filter(new IntHalfbandFilter),
m_workFunction(0)
{
switch(mode) {
case ModeCenter:
m_workFunction = &IntHalfbandFilter::workInterpolateCenter;
break;
case ModeLowerHalf:
m_workFunction = &IntHalfbandFilter::workInterpolateLowerHalf;
break;
case ModeUpperHalf:
m_workFunction = &IntHalfbandFilter::workInterpolateUpperHalf;
break;
}
}
UpChannelizer::FilterStage::~FilterStage()
{
delete m_filter;
}
bool UpChannelizer::signalContainsChannel(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) const
{
//qDebug(" testing signal [%f, %f], channel [%f, %f]", sigStart, sigEnd, chanStart, chanEnd);
if(sigEnd <= sigStart)
return false;
if(chanEnd <= chanStart)
return false;
return (sigStart <= chanStart) && (sigEnd >= chanEnd);
}
Real UpChannelizer::createFilterChain(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd)
{
Real sigBw = sigEnd - sigStart;
Real safetyMargin = sigBw / 20;
Real rot = sigBw / 4;
safetyMargin = 0;
//fprintf(stderr, "Channelizer::createFilterChain: ");
//fprintf(stderr, "Signal [%.1f, %.1f] (BW %.1f), Channel [%.1f, %.1f], Rot %.1f, Safety %.1f\n", sigStart, sigEnd, sigBw, chanStart, chanEnd, rot, safetyMargin);
#if 1
// check if it fits into the left half
if(signalContainsChannel(sigStart + safetyMargin, sigStart + sigBw / 2.0 - safetyMargin, chanStart, chanEnd)) {
//fprintf(stderr, "-> take left half (rotate by +1/4 and decimate by 2)\n");
m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf));
return createFilterChain(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd);
}
// check if it fits into the right half
if(signalContainsChannel(sigEnd - sigBw / 2.0f + safetyMargin, sigEnd - safetyMargin, chanStart, chanEnd)) {
//fprintf(stderr, "-> take right half (rotate by -1/4 and decimate by 2)\n");
m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf));
return createFilterChain(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd);
}
// check if it fits into the center
// Was: if(signalContainsChannel(sigStart + rot + safetyMargin, sigStart + rot + sigBw / 2.0f - safetyMargin, chanStart, chanEnd)) {
if(signalContainsChannel(sigStart + rot + safetyMargin, sigEnd - rot - safetyMargin, chanStart, chanEnd)) {
//fprintf(stderr, "-> take center half (decimate by 2)\n");
m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter));
// Was: return createFilterChain(sigStart + rot, sigStart + sigBw / 2.0f + rot, chanStart, chanEnd);
return createFilterChain(sigStart + rot, sigEnd - rot, chanStart, chanEnd);
}
#endif
Real ofs = ((chanEnd - chanStart) / 2.0 + chanStart) - ((sigEnd - sigStart) / 2.0 + sigStart);
//fprintf(stderr, "-> complete (final BW %.1f, frequency offset %.1f)\n", sigBw, ofs);
return ofs;
}
void UpChannelizer::freeFilterChain()
{
for(FilterStages::iterator it = m_filterStages.begin(); it != m_filterStages.end(); ++it)
delete *it;
m_filterStages.clear();
}