1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-14 04:11:48 -05:00
sdrangel/plugins/samplesource/hackrfinput/hackrfinput.cpp

460 lines
13 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2015 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include "hackrfinput.h"
#include <string.h>
#include <errno.h>
#include <QDebug>
#include "util/simpleserializer.h"
#include "dsp/dspcommands.h"
#include "dsp/dspengine.h"
#include "device/devicesourceapi.h"
#include "device/devicesinkapi.h"
#include "hackrf/devicehackrfvalues.h"
#include "hackrfinputgui.h"
#include "hackrfinputthread.h"
MESSAGE_CLASS_DEFINITION(HackRFInput::MsgConfigureHackRF, Message)
MESSAGE_CLASS_DEFINITION(HackRFInput::MsgReportHackRF, Message)
HackRFInput::HackRFInput(DeviceSourceAPI *deviceAPI) :
m_deviceAPI(deviceAPI),
m_settings(),
m_dev(0),
m_hackRFThread(0),
m_deviceDescription("HackRF"),
m_running(false)
{
openDevice();
m_deviceAPI->setBuddySharedPtr(&m_sharedParams);
}
HackRFInput::~HackRFInput()
{
if (m_running) stop();
closeDevice();
m_deviceAPI->setBuddySharedPtr(0);
}
bool HackRFInput::openDevice()
{
if (m_dev != 0)
{
closeDevice();
}
if (!m_sampleFifo.setSize(1<<19))
{
qCritical("HackRFInput::start: could not allocate SampleFifo");
return false;
}
if (m_deviceAPI->getSinkBuddies().size() > 0)
{
DeviceSinkAPI *buddy = m_deviceAPI->getSinkBuddies()[0];
DeviceHackRFParams *buddySharedParams = (DeviceHackRFParams *) buddy->getBuddySharedPtr();
if (buddySharedParams == 0)
{
qCritical("HackRFInput::openDevice: could not get shared parameters from buddy");
return false;
}
if (buddySharedParams->m_dev == 0) // device is not opened by buddy
{
qCritical("HackRFInput::openDevice: could not get HackRF handle from buddy");
return false;
}
m_sharedParams = *(buddySharedParams); // copy parameters from buddy
m_dev = m_sharedParams.m_dev; // get HackRF handle
}
else
{
if ((m_dev = DeviceHackRF::open_hackrf(qPrintable(m_deviceAPI->getSampleSourceSerial()))) == 0)
{
qCritical("HackRFInput::openDevice: could not open HackRF %s", qPrintable(m_deviceAPI->getSampleSourceSerial()));
return false;
}
m_sharedParams.m_dev = m_dev;
}
return true;
}
bool HackRFInput::start()
{
// QMutexLocker mutexLocker(&m_mutex);
if (!m_dev) {
return false;
}
if (m_running) stop();
if ((m_hackRFThread = new HackRFInputThread(m_dev, &m_sampleFifo)) == 0)
{
qFatal("HackRFInput::start: out of memory");
stop();
return false;
}
// mutexLocker.unlock();
applySettings(m_settings, true);
m_hackRFThread->setSamplerate(m_settings.m_devSampleRate);
m_hackRFThread->setLog2Decimation(m_settings.m_log2Decim);
m_hackRFThread->setFcPos((int) m_settings.m_fcPos);
m_hackRFThread->startWork();
qDebug("HackRFInput::startInput: started");
m_running = true;
return true;
}
void HackRFInput::closeDevice()
{
if (m_deviceAPI->getSinkBuddies().size() == 0)
{
qDebug("HackRFInput::closeDevice: closing device since Tx side is not open");
if(m_dev != 0) // close BladeRF
{
hackrf_close(m_dev);
//hackrf_exit(); // TODO: this may not work if several HackRF Devices are running concurrently. It should be handled globally in the application
}
}
m_sharedParams.m_dev = 0;
m_dev = 0;
}
void HackRFInput::stop()
{
qDebug("HackRFInput::stop");
// QMutexLocker mutexLocker(&m_mutex);
if (m_hackRFThread != 0)
{
m_hackRFThread->stopWork();
delete m_hackRFThread;
m_hackRFThread = 0;
}
m_running = false;
}
const QString& HackRFInput::getDeviceDescription() const
{
return m_deviceDescription;
}
int HackRFInput::getSampleRate() const
{
return (m_settings.m_devSampleRate / (1<<m_settings.m_log2Decim));
}
quint64 HackRFInput::getCenterFrequency() const
{
return m_settings.m_centerFrequency;
}
bool HackRFInput::handleMessage(const Message& message)
{
if (MsgConfigureHackRF::match(message))
{
MsgConfigureHackRF& conf = (MsgConfigureHackRF&) message;
qDebug() << "HackRFInput::handleMessage: MsgConfigureHackRF";
bool success = applySettings(conf.getSettings(), false);
if (!success)
{
qDebug("HackRFInput::handleMessage: config error");
}
return true;
}
else
{
return false;
}
}
void HackRFInput::setCenterFrequency(quint64 freq_hz)
{
qint64 df = ((qint64)freq_hz * m_settings.m_LOppmTenths) / 10000000LL;
freq_hz += df;
hackrf_error rc = (hackrf_error) hackrf_set_freq(m_dev, static_cast<uint64_t>(freq_hz));
if (rc != HACKRF_SUCCESS)
{
qWarning("HackRFInput::setCenterFrequency: could not frequency to %llu Hz", freq_hz);
}
else
{
qWarning("HackRFInput::setCenterFrequency: frequency set to %llu Hz", freq_hz);
}
}
bool HackRFInput::applySettings(const HackRFInputSettings& settings, bool force)
{
// QMutexLocker mutexLocker(&m_mutex);
bool forwardChange = false;
hackrf_error rc;
qDebug() << "HackRFInput::applySettings";
if (m_settings.m_dcBlock != settings.m_dcBlock)
{
m_settings.m_dcBlock = settings.m_dcBlock;
m_deviceAPI->configureCorrections(m_settings.m_dcBlock, m_settings.m_iqCorrection);
}
if (m_settings.m_iqCorrection != settings.m_iqCorrection)
{
m_settings.m_iqCorrection = settings.m_iqCorrection;
m_deviceAPI->configureCorrections(m_settings.m_dcBlock, m_settings.m_iqCorrection);
}
if ((m_settings.m_devSampleRate != settings.m_devSampleRate) || force)
{
m_settings.m_devSampleRate = settings.m_devSampleRate;
forwardChange = true;
if (m_dev != 0)
{
rc = (hackrf_error) hackrf_set_sample_rate_manual(m_dev, m_settings.m_devSampleRate, 1);
if (rc != HACKRF_SUCCESS)
{
qCritical("HackRFInput::applySettings: could not set sample rate TO %llu S/s: %s", m_settings.m_devSampleRate, hackrf_error_name(rc));
}
else
{
if (m_hackRFThread != 0)
{
qDebug("HackRFInput::applySettings: sample rate set to %llu S/s", m_settings.m_devSampleRate);
m_hackRFThread->setSamplerate(m_settings.m_devSampleRate);
}
}
}
}
if ((m_settings.m_log2Decim != settings.m_log2Decim) || force)
{
m_settings.m_log2Decim = settings.m_log2Decim;
forwardChange = true;
if (m_hackRFThread != 0)
{
m_hackRFThread->setLog2Decimation(m_settings.m_log2Decim);
qDebug() << "HackRFInput: set decimation to " << (1<<m_settings.m_log2Decim);
}
}
qint64 deviceCenterFrequency = m_settings.m_centerFrequency;
qint64 f_img = deviceCenterFrequency;
quint32 devSampleRate =m_settings.m_devSampleRate;
if (force || (m_settings.m_centerFrequency != settings.m_centerFrequency) ||
(m_settings.m_LOppmTenths != settings.m_LOppmTenths) ||
(m_settings.m_fcPos != settings.m_fcPos))
{
m_settings.m_centerFrequency = settings.m_centerFrequency;
m_settings.m_LOppmTenths = settings.m_LOppmTenths;
if ((m_settings.m_log2Decim == 0) || (settings.m_fcPos == HackRFInputSettings::FC_POS_CENTER))
{
deviceCenterFrequency = m_settings.m_centerFrequency;
f_img = deviceCenterFrequency;
}
else
{
if (settings.m_fcPos == HackRFInputSettings::FC_POS_INFRA)
{
deviceCenterFrequency = m_settings.m_centerFrequency + (devSampleRate / 4);
f_img = deviceCenterFrequency + devSampleRate/2;
}
else if (settings.m_fcPos == HackRFInputSettings::FC_POS_SUPRA)
{
deviceCenterFrequency = m_settings.m_centerFrequency - (devSampleRate / 4);
f_img = deviceCenterFrequency - devSampleRate/2;
}
}
if (m_dev != 0)
{
setCenterFrequency(deviceCenterFrequency);
qDebug() << "HackRFInput::applySettings: center freq: " << m_settings.m_centerFrequency << " Hz"
<< " device center freq: " << deviceCenterFrequency << " Hz"
<< " device sample rate: " << devSampleRate << "Hz"
<< " Actual sample rate: " << devSampleRate/(1<<m_settings.m_log2Decim) << "Hz"
<< " img: " << f_img << "Hz";
}
forwardChange = true;
}
if ((m_settings.m_fcPos != settings.m_fcPos) || force)
{
m_settings.m_fcPos = settings.m_fcPos;
if (m_hackRFThread != 0)
{
m_hackRFThread->setFcPos((int) m_settings.m_fcPos);
qDebug() << "HackRFInput: set fc pos (enum) to " << (int) m_settings.m_fcPos;
}
}
if ((m_settings.m_lnaGain != settings.m_lnaGain) || force)
{
m_settings.m_lnaGain = settings.m_lnaGain;
if (m_dev != 0)
{
rc = (hackrf_error) hackrf_set_lna_gain(m_dev, m_settings.m_lnaGain);
if(rc != HACKRF_SUCCESS)
{
qDebug("HackRFInput::applySettings: airspy_set_lna_gain failed: %s", hackrf_error_name(rc));
}
else
{
qDebug() << "HackRFInput:applySettings: LNA gain set to " << m_settings.m_lnaGain;
}
}
}
if ((m_settings.m_vgaGain != settings.m_vgaGain) || force)
{
m_settings.m_vgaGain = settings.m_vgaGain;
if (m_dev != 0)
{
rc = (hackrf_error) hackrf_set_vga_gain(m_dev, m_settings.m_vgaGain);
if (rc != HACKRF_SUCCESS)
{
qDebug("HackRFInput::applySettings: hackrf_set_vga_gain failed: %s", hackrf_error_name(rc));
}
else
{
qDebug() << "HackRFInput:applySettings: VGA gain set to " << m_settings.m_vgaGain;
}
}
}
if ((m_settings.m_bandwidth != settings.m_bandwidth) || force)
{
m_settings.m_bandwidth = settings.m_bandwidth;
if (m_dev != 0)
{
uint32_t bw_index = hackrf_compute_baseband_filter_bw_round_down_lt(m_settings.m_bandwidth);
rc = (hackrf_error) hackrf_set_baseband_filter_bandwidth(m_dev, bw_index);
if (rc != HACKRF_SUCCESS)
{
qDebug("HackRFInput::applySettings: hackrf_set_baseband_filter_bandwidth failed: %s", hackrf_error_name(rc));
}
else
{
qDebug() << "HackRFInput:applySettings: Baseband BW filter set to " << m_settings.m_bandwidth << " Hz";
}
}
}
if ((m_settings.m_biasT != settings.m_biasT) || force)
{
m_settings.m_biasT = settings.m_biasT;
if (m_dev != 0)
{
rc = (hackrf_error) hackrf_set_antenna_enable(m_dev, (m_settings.m_biasT ? 1 : 0));
if(rc != HACKRF_SUCCESS)
{
qDebug("HackRFInput::applySettings: hackrf_set_antenna_enable failed: %s", hackrf_error_name(rc));
}
else
{
qDebug() << "HackRFInput:applySettings: bias tee set to " << m_settings.m_biasT;
}
}
}
if ((m_settings.m_lnaExt != settings.m_lnaExt) || force)
{
m_settings.m_lnaExt = settings.m_lnaExt;
if (m_dev != 0)
{
rc = (hackrf_error) hackrf_set_amp_enable(m_dev, (m_settings.m_lnaExt ? 1 : 0));
if(rc != HACKRF_SUCCESS)
{
qDebug("HackRFInput::applySettings: hackrf_set_amp_enable failed: %s", hackrf_error_name(rc));
}
else
{
qDebug() << "HackRFInput:applySettings: extra LNA set to " << m_settings.m_lnaExt;
}
}
}
if (forwardChange)
{
int sampleRate = devSampleRate/(1<<m_settings.m_log2Decim);
DSPSignalNotification *notif = new DSPSignalNotification(sampleRate, m_settings.m_centerFrequency);
m_deviceAPI->getDeviceInputMessageQueue()->push(notif);
}
qDebug() << "HackRFInput::applySettings: center freq: " << m_settings.m_centerFrequency << " Hz"
<< " device center freq: " << deviceCenterFrequency << " Hz"
<< " device sample rate: " << m_settings.m_devSampleRate << "S/s"
<< " Actual sample rate: " << m_settings.m_devSampleRate/(1<<m_settings.m_log2Decim) << "S/s";
return true;
}
//hackrf_device *HackRFInput::open_hackrf_from_sequence(int sequence)
//{
// hackrf_device_list_t *hackrf_devices = hackrf_device_list();
// hackrf_device *hackrf_ptr;
// hackrf_error rc;
//
// rc = (hackrf_error) hackrf_device_list_open(hackrf_devices, sequence, &hackrf_ptr);
//
// if (rc == HACKRF_SUCCESS)
// {
// return hackrf_ptr;
// }
// else
// {
// return 0;
// }
//}