1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-30 03:38:55 -05:00
sdrangel/plugins/channelrx/radioastronomy/radioastronomy.cpp

1187 lines
46 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2015-2018 Edouard Griffiths, F4EXB. //
// Copyright (C) 2021 Jon Beniston, M7RCE //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include "radioastronomy.h"
#include <QTime>
#include <QDebug>
#include <QNetworkAccessManager>
#include <QNetworkReply>
#include <QBuffer>
#include <QThread>
#include <QRegExp>
#include <QProcess>
#include <stdio.h>
#include <complex.h>
#include "SWGChannelSettings.h"
#include "SWGChannelReport.h"
#include "SWGChannelActions.h"
#include "SWGRadioAstronomyActions.h"
#include "dsp/dspengine.h"
#include "dsp/dspcommands.h"
#include "device/deviceapi.h"
#include "feature/feature.h"
#include "channel/channelwebapiutils.h"
#include "util/astronomy.h"
#include "util/db.h"
#include "maincore.h"
#include "radioastronomyworker.h"
MESSAGE_CLASS_DEFINITION(RadioAstronomy::MsgConfigureRadioAstronomy, Message)
MESSAGE_CLASS_DEFINITION(RadioAstronomy::MsgStartMeasurements, Message)
MESSAGE_CLASS_DEFINITION(RadioAstronomy::MsgStopMeasurements, Message)
MESSAGE_CLASS_DEFINITION(RadioAstronomy::MsgMeasurementProgress, Message)
MESSAGE_CLASS_DEFINITION(RadioAstronomy::MsgStartCal, Message)
MESSAGE_CLASS_DEFINITION(RadioAstronomy::MsgCalComplete, Message)
MESSAGE_CLASS_DEFINITION(RadioAstronomy::MsgFFTMeasurement, Message)
MESSAGE_CLASS_DEFINITION(RadioAstronomy::MsgSensorMeasurement, Message)
MESSAGE_CLASS_DEFINITION(RadioAstronomy::MsgStartSweep, Message)
MESSAGE_CLASS_DEFINITION(RadioAstronomy::MsgStopSweep, Message)
MESSAGE_CLASS_DEFINITION(RadioAstronomy::MsgSweepComplete, Message)
MESSAGE_CLASS_DEFINITION(RadioAstronomy::MsgSweepStatus, Message)
const char * const RadioAstronomy::m_channelIdURI = "sdrangel.channel.radioastronomy";
const char * const RadioAstronomy::m_channelId = "RadioAstronomy";
RadioAstronomy::RadioAstronomy(DeviceAPI *deviceAPI) :
ChannelAPI(m_channelIdURI, ChannelAPI::StreamSingleSink),
m_deviceAPI(deviceAPI),
m_basebandSampleRate(0),
m_sweeping(false)
{
setObjectName(m_channelId);
m_basebandSink = new RadioAstronomyBaseband(this);
m_basebandSink->setMessageQueueToChannel(getInputMessageQueue());
m_basebandSink->setChannel(this);
m_basebandSink->moveToThread(&m_thread);
m_worker = new RadioAstronomyWorker(this);
m_worker->setMessageQueueToChannel(getInputMessageQueue());
m_worker->moveToThread(&m_workerThread);
applySettings(m_settings, true);
m_deviceAPI->addChannelSink(this);
m_deviceAPI->addChannelSinkAPI(this);
m_selectedPipe = nullptr;
connect(&m_updatePipesTimer, SIGNAL(timeout()), this, SLOT(updatePipes()));
m_updatePipesTimer.start(1000);
m_networkManager = new QNetworkAccessManager();
connect(m_networkManager, SIGNAL(finished(QNetworkReply*)), this, SLOT(networkManagerFinished(QNetworkReply*)));
connect(&m_channelMessageQueue, SIGNAL(messageEnqueued()), this, SLOT(handleChannelMessages()));
m_sweepTimer.setSingleShot(true);
}
RadioAstronomy::~RadioAstronomy()
{
qDebug("RadioAstronomy::~RadioAstronomy");
disconnect(m_networkManager, SIGNAL(finished(QNetworkReply*)), this, SLOT(networkManagerFinished(QNetworkReply*)));
delete m_networkManager;
m_deviceAPI->removeChannelSinkAPI(this);
m_deviceAPI->removeChannelSink(this);
if (m_basebandSink->isRunning()) {
stop();
}
delete m_basebandSink;
if (m_worker->isRunning()) {
stop();
}
delete m_worker;
}
uint32_t RadioAstronomy::getNumberOfDeviceStreams() const
{
return m_deviceAPI->getNbSourceStreams();
}
void RadioAstronomy::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool firstOfBurst)
{
(void) firstOfBurst;
m_basebandSink->feed(begin, end);
}
void RadioAstronomy::start()
{
qDebug("RadioAstronomy::start");
m_basebandSink->reset();
m_basebandSink->startWork();
m_thread.start();
m_worker->reset();
m_worker->setMessageQueueToGUI(getMessageQueueToGUI());
m_worker->startWork();
m_workerThread.start();
m_basebandSink->getInputMessageQueue()->push(new DSPSignalNotification(m_basebandSampleRate, m_centerFrequency));
m_basebandSink->getInputMessageQueue()->push(RadioAstronomyBaseband::MsgConfigureRadioAstronomyBaseband::create(m_settings, true));
m_worker->getInputMessageQueue()->push(RadioAstronomyWorker::MsgConfigureRadioAstronomyWorker::create(m_settings, true));
}
void RadioAstronomy::stop()
{
qDebug("RadioAstronomy::stop");
m_basebandSink->stopWork();
m_thread.quit();
m_thread.wait();
m_worker->stopWork();
m_workerThread.quit();
m_workerThread.wait();
}
void RadioAstronomy::setCenterFrequency(qint64 frequency)
{
RadioAstronomySettings settings = m_settings;
settings.m_inputFrequencyOffset = frequency;
applySettings(settings, false);
if (m_guiMessageQueue) // forward to GUI if any
{
MsgConfigureRadioAstronomy *msgToGUI = MsgConfigureRadioAstronomy::create(settings, false);
m_guiMessageQueue->push(msgToGUI);
}
}
bool RadioAstronomy::handleMessage(const Message& cmd)
{
if (MsgConfigureRadioAstronomy::match(cmd))
{
MsgConfigureRadioAstronomy& cfg = (MsgConfigureRadioAstronomy&) cmd;
qDebug() << "RadioAstronomy::handleMessage: MsgConfigureRadioAstronomy";
applySettings(cfg.getSettings(), cfg.getForce());
return true;
}
else if (DSPSignalNotification::match(cmd))
{
DSPSignalNotification& notif = (DSPSignalNotification&) cmd;
m_basebandSampleRate = notif.getSampleRate();
m_centerFrequency = notif.getCenterFrequency();
// Forward to the sink
DSPSignalNotification* rep = new DSPSignalNotification(notif); // make a copy
qDebug() << "RadioAstronomy::handleMessage: DSPSignalNotification";
m_basebandSink->getInputMessageQueue()->push(rep);
// Forward to GUI
if (getMessageQueueToGUI()) {
getMessageQueueToGUI()->push(new DSPSignalNotification(notif));
}
return true;
}
else if (MainCore::MsgStarTrackerTarget::match(cmd))
{
MainCore::MsgStarTrackerTarget& msg = (MainCore::MsgStarTrackerTarget&)cmd;
if (msg.getPipeSource() == m_selectedPipe)
{
// Forward to GUI
if (getMessageQueueToGUI()) {
getMessageQueueToGUI()->push(new MainCore::MsgStarTrackerTarget(msg));
}
}
return true;
}
else if (MsgMeasurementProgress::match(cmd))
{
// Forward to GUI
MsgMeasurementProgress& report = (MsgMeasurementProgress&)cmd;
if (getMessageQueueToGUI()) {
getMessageQueueToGUI()->push(new MsgMeasurementProgress(report));
}
return true;
}
else if (MsgStartCal::match(cmd))
{
// Forward to the sink
MsgStartCal& calCmd = (MsgStartCal&)cmd;
startCal(calCmd.getHot());
return true;
}
else if (MsgCalComplete::match(cmd))
{
// Take copy to forward to GUI
MsgCalComplete& report = (MsgCalComplete&)cmd;
MsgCalComplete* copy = nullptr;
if (getMessageQueueToGUI()) {
copy = new MsgCalComplete(report);
}
calComplete(copy);
return true;
}
else if (MsgFFTMeasurement::match(cmd))
{
// Forward to GUI
MsgFFTMeasurement& report = (MsgFFTMeasurement&)cmd;
if (getMessageQueueToGUI()) {
getMessageQueueToGUI()->push(new MsgFFTMeasurement(report));
}
if (m_sweeping) {
m_sweeping = false;
sweepNext();
}
return true;
}
else if (MsgStartSweep::match(cmd))
{
if (m_settings.m_runMode == RadioAstronomySettings::SWEEP) {
sweepStart();
} else {
callOnStartTime(&RadioAstronomy::startMeasurement);
}
return true;
}
else if (MsgStopSweep::match(cmd))
{
if (m_settings.m_runMode == RadioAstronomySettings::SWEEP)
{
m_sweepStop = true;
m_sweepTimer.setInterval(0);
}
else
{
m_basebandSink->getInputMessageQueue()->push(MsgStopMeasurements::create());
}
return true;
}
else
{
return false;
}
}
void RadioAstronomy::startCal(bool hot)
{
// Set GPIO pin in SDR to enable calibration
if (m_settings.m_gpioEnabled)
{
int gpioPins;
int gpioDir;
if (ChannelWebAPIUtils::getDeviceSetting(getDeviceSetIndex(), "gpioDir", gpioDir))
{
// Set pin as output
gpioDir |= 1 << m_settings.m_gpioPin;
ChannelWebAPIUtils::patchDeviceSetting(getDeviceSetIndex(), "gpioDir", gpioDir);
if (ChannelWebAPIUtils::getDeviceSetting(getDeviceSetIndex(), "gpioPins", gpioPins))
{
// Set state of pin
if (m_settings.m_gpioSense) {
gpioPins |= 1 << m_settings.m_gpioPin;
} else {
gpioPins &= ~(1 << m_settings.m_gpioPin);
}
ChannelWebAPIUtils::patchDeviceSetting(getDeviceSetIndex(), "gpioPins", gpioPins);
}
else
{
qDebug() << "RadioAstronomy::startCal - Failed to read gpioPins setting. Does this SDR support it?";
}
}
else
{
qDebug() << "RadioAstronomy::startCal - Failed to read gpioDir setting. Does this SDR support it?";
}
}
// Execute command to enable calibration
if (!m_settings.m_startCalCommand.isEmpty())
{
#if QT_VERSION >= QT_VERSION_CHECK(5, 14, 0)
QStringList allArgs = m_settings.m_startCalCommand.split(" ", Qt::SkipEmptyParts);
#else
QStringList allArgs = m_settings.m_startCalCommand.split(" ", QString::SkipEmptyParts);
#endif
QString program = allArgs[0];
allArgs.pop_front();
QProcess::startDetached(program, allArgs);
}
// Start calibration after requested delay
MsgStartCal* startCal = MsgStartCal::create(hot);
QTimer::singleShot(m_settings.m_calCommandDelay * 1000, [this, startCal] {
m_basebandSink->getInputMessageQueue()->push(startCal);
});
}
void RadioAstronomy::calComplete(MsgCalComplete* report)
{
// Set GPIO pin in SDR to disable calibration
if (m_settings.m_gpioEnabled)
{
int gpioPins;
if (ChannelWebAPIUtils::getDeviceSetting(getDeviceSetIndex(), "gpioPins", gpioPins))
{
if (m_settings.m_gpioSense) {
gpioPins &= ~(1 << m_settings.m_gpioPin);
} else {
gpioPins |= 1 << m_settings.m_gpioPin;
}
ChannelWebAPIUtils::patchDeviceSetting(getDeviceSetIndex(), "gpioPins", gpioPins);
}
else
{
qDebug() << "RadioAstronomy::calComplete - Failed to read gpioPins setting. Does this SDR support it?";
}
}
// Execute command to disable calibration
if (!m_settings.m_stopCalCommand.isEmpty())
{
#if QT_VERSION >= QT_VERSION_CHECK(5, 14, 0)
QStringList allArgs = m_settings.m_stopCalCommand.split(" ", Qt::SkipEmptyParts);
#else
QStringList allArgs = m_settings.m_stopCalCommand.split(" ", QString::SkipEmptyParts);
#endif
QString program = allArgs[0];
allArgs.pop_front();
QProcess::startDetached(program, allArgs);
}
// Send calibration result to GUI
if (getMessageQueueToGUI()) {
getMessageQueueToGUI()->push(report);
}
}
void RadioAstronomy::callOnStartTime(void (RadioAstronomy::*f)())
{
qint64 delayMSecs = 0;
if (m_settings.m_sweepStartAtTime) {
delayMSecs = QDateTime::currentDateTime().msecsTo(m_settings.m_sweepStartDateTime);
}
if (delayMSecs > 0)
{
if (getMessageQueueToGUI()) {
getMessageQueueToGUI()->push(MsgSweepStatus::create(QString("Waiting: %1").arg(m_settings.m_sweepStartDateTime.toString())));
}
qDebug() << "RadioAstronomy::callOnStartTime - Wait until " << m_settings.m_sweepStartDateTime.toString();
// Wait before calling
QObject::disconnect(m_sweepTimerConnection);
m_sweepTimerConnection = m_sweepTimer.callOnTimeout(this, f);
m_sweepTimer.start(delayMSecs);
}
else
{
// Call immediately
(this->*f)();
}
}
void RadioAstronomy::startMeasurement()
{
m_basebandSink->getInputMessageQueue()->push(MsgStartMeasurements::create());
}
void RadioAstronomy::sweepStart()
{
m_sweepStop = false;
m_sweep1Start = m_settings.m_sweep1Start;
m_sweep1Stop = m_settings.m_sweep1Stop;
// Handle azimuth/l sweep through 0. E.g. 340deg -> 20deg with +vs step, or 20deg -> 340deg with -ve step
if ((m_settings.m_sweep1Stop < m_settings.m_sweep1Start) && (m_settings.m_sweep1Step > 0)) {
m_sweep1Stop = m_settings.m_sweep1Stop + 360.0;
} else if ((m_settings.m_sweep1Stop > m_settings.m_sweep1Start) && (m_settings.m_sweep1Step < 0)) {
m_sweep1Start += 360.0;
}
m_sweep1 = m_sweep1Start;
m_sweep2 = m_settings.m_sweep2Start;
const QRegExp re("F([0-9]+):([0-9]+)");
if (re.indexIn(m_settings.m_starTracker) >= 0)
{
m_starTrackerFeatureSetIndex = re.capturedTexts()[1].toInt();
m_starTrackerFeatureIndex = re.capturedTexts()[2].toInt();
if (m_settings.m_sweepType == RadioAstronomySettings::SWP_AZEL) {
ChannelWebAPIUtils::patchFeatureSetting(m_starTrackerFeatureSetIndex, m_starTrackerFeatureIndex, "target", "Custom Az/El");
} else if (m_settings.m_sweepType == RadioAstronomySettings::SWP_LB) {
ChannelWebAPIUtils::patchFeatureSetting(m_starTrackerFeatureSetIndex, m_starTrackerFeatureIndex, "target", "Custom l/b");
}
if (m_settings.m_rotator == "None")
{
m_rotatorFeatureSetIndex = -1;
m_rotatorFeatureIndex = -1;
sweep2();
callOnStartTime(&RadioAstronomy::sweep1);
}
else if (re.indexIn(m_settings.m_rotator) >= 0)
{
m_rotatorFeatureSetIndex = re.capturedTexts()[1].toInt();
m_rotatorFeatureIndex = re.capturedTexts()[2].toInt();
sweep2();
callOnStartTime(&RadioAstronomy::sweep1);
}
else
{
if (getMessageQueueToGUI()) {
getMessageQueueToGUI()->push(MsgSweepStatus::create("Invalid rotator"));
}
qDebug() << "RadioAstronomy::sweepStart: No valid rotator feature is set";
}
}
else
{
if (getMessageQueueToGUI()) {
getMessageQueueToGUI()->push(MsgSweepStatus::create("Invalid Star Tracker"));
}
qDebug() << "RadioAstronomy::sweepStart: No valid StarTracker feature is set";
}
}
void RadioAstronomy::sweep1()
{
if (m_sweepStop)
{
if (getMessageQueueToGUI()) {
getMessageQueueToGUI()->push(MsgSweepStatus::create("Stopped"));
}
sweepComplete();
}
else
{
if (m_settings.m_sweepType == RadioAstronomySettings::SWP_AZEL) {
ChannelWebAPIUtils::patchFeatureSetting(m_starTrackerFeatureSetIndex, m_starTrackerFeatureIndex, "azimuth", Astronomy::modulo(m_sweep1, 360.0));
} else if (m_settings.m_sweepType == RadioAstronomySettings::SWP_LB) {
ChannelWebAPIUtils::patchFeatureSetting(m_starTrackerFeatureSetIndex, m_starTrackerFeatureIndex, "l", Astronomy::modulo(m_sweep1, 360.0));
} else if (m_settings.m_sweepType == RadioAstronomySettings::SWP_OFFSET) {
ChannelWebAPIUtils::patchFeatureSetting(m_starTrackerFeatureSetIndex, m_starTrackerFeatureIndex, "azimuthOffset", m_sweep1);
}
if (getMessageQueueToGUI()) {
getMessageQueueToGUI()->push(MsgSweepStatus::create(QString("Rotating: %1,%2").arg(m_sweep1).arg(m_sweep2)));
}
qDebug() << "RadioAstronomy::sweep1 - Sweeping " << m_sweep1 << m_sweep2;
QObject::disconnect(m_sweepTimerConnection);
m_sweepTimerConnection = m_sweepTimer.callOnTimeout(this, &RadioAstronomy::waitUntilOnTarget);
m_sweepTimer.start(100);
}
}
void RadioAstronomy::sweep2()
{
if (m_settings.m_sweepType == RadioAstronomySettings::SWP_AZEL) {
ChannelWebAPIUtils::patchFeatureSetting(m_starTrackerFeatureSetIndex, m_starTrackerFeatureIndex, "elevation", m_sweep2);
} else if (m_settings.m_sweepType == RadioAstronomySettings::SWP_LB) {
ChannelWebAPIUtils::patchFeatureSetting(m_starTrackerFeatureSetIndex, m_starTrackerFeatureIndex, "b", m_sweep2);
} else if (m_settings.m_sweepType == RadioAstronomySettings::SWP_OFFSET) {
ChannelWebAPIUtils::patchFeatureSetting(m_starTrackerFeatureSetIndex, m_starTrackerFeatureIndex, "elevationOffset", m_sweep2);
}
}
// Wait until the antenna is pointing at the target
void RadioAstronomy::waitUntilOnTarget()
{
int onTarget;
if (m_sweepStop)
{
if (getMessageQueueToGUI()) {
getMessageQueueToGUI()->push(MsgSweepStatus::create("Stopped"));
}
sweepComplete();
}
else
{
if (m_settings.m_rotator == "None")
{
onTarget = true;
}
else if (!ChannelWebAPIUtils::getFeatureReportValue(m_rotatorFeatureSetIndex, m_rotatorFeatureIndex, "onTarget", onTarget))
{
sweepComplete();
return;
}
if (onTarget)
{
if (getMessageQueueToGUI()) {
getMessageQueueToGUI()->push(MsgSweepStatus::create("Settle"));
}
QObject::disconnect(m_sweepTimerConnection);
m_sweepTimerConnection = m_sweepTimer.callOnTimeout(this, &RadioAstronomy::sweepStartMeasurement);
m_sweepTimer.start(m_settings.m_sweep1Delay * 1000);
}
else
{
// Wait some more and retry
QObject::disconnect(m_sweepTimerConnection);
m_sweepTimerConnection = m_sweepTimer.callOnTimeout(this, &RadioAstronomy::waitUntilOnTarget);
m_sweepTimer.start(100);
}
}
}
void RadioAstronomy::sweepStartMeasurement()
{
if (getMessageQueueToGUI()) {
getMessageQueueToGUI()->push(MsgSweepStatus::create(QString("Measure: %1,%2").arg(m_sweep1).arg(m_sweep2)));
}
// Start measurement
m_sweeping = true;
m_basebandSink->getInputMessageQueue()->push(MsgStartMeasurements::create());
}
void RadioAstronomy::sweepNext()
{
if (m_sweepStop)
{
if (getMessageQueueToGUI()) {
getMessageQueueToGUI()->push(MsgSweepStatus::create("Stopped"));
}
sweepComplete();
}
else
{
if ( ((m_sweep1 >= m_sweep1Stop) && (m_settings.m_sweep1Step >= 0))
|| ((m_sweep1 <= m_sweep1Stop) && (m_settings.m_sweep1Step < 0))
)
{
if ( ((m_sweep2 >= m_settings.m_sweep2Stop) && (m_settings.m_sweep2Step >= 0))
|| ((m_sweep2 <= m_settings.m_sweep2Stop) && (m_settings.m_sweep2Step < 0))
)
{
if (getMessageQueueToGUI()) {
getMessageQueueToGUI()->push(MsgSweepStatus::create("Complete"));
}
// Finished
sweepComplete();
}
else
{
m_sweep2 += m_settings.m_sweep2Step;
sweep2();
m_sweep1 = m_sweep1Start;
if (getMessageQueueToGUI()) {
getMessageQueueToGUI()->push(MsgSweepStatus::create("Delay"));
}
QObject::disconnect(m_sweepTimerConnection);
m_sweepTimerConnection = m_sweepTimer.callOnTimeout(this, &RadioAstronomy::sweep1);
m_sweepTimer.start(m_settings.m_sweep2Delay * 1000);
}
}
else
{
m_sweep1 += m_settings.m_sweep1Step;
if (getMessageQueueToGUI()) {
getMessageQueueToGUI()->push(MsgSweepStatus::create("Delay"));
}
QObject::disconnect(m_sweepTimerConnection);
m_sweepTimerConnection = m_sweepTimer.callOnTimeout(this, &RadioAstronomy::sweep1);
m_sweepTimer.start(m_settings.m_sweep2Delay * 1000);
}
}
}
void RadioAstronomy::sweepComplete()
{
ChannelWebAPIUtils::patchFeatureSetting(m_starTrackerFeatureSetIndex, m_starTrackerFeatureIndex, "elevationOffset", 0);
ChannelWebAPIUtils::patchFeatureSetting(m_starTrackerFeatureSetIndex, m_starTrackerFeatureIndex, "azimuthOffset", 0);
if (getMessageQueueToGUI()) {
getMessageQueueToGUI()->push(MsgSweepComplete::create());
}
}
void RadioAstronomy::updatePipes()
{
QList<AvailablePipeSource> availablePipes = updateAvailablePipeSources("startracker.target", RadioAstronomySettings::m_pipeTypes, RadioAstronomySettings::m_pipeURIs, this);
if (availablePipes != m_availablePipes)
{
m_availablePipes = availablePipes;
if (getMessageQueueToGUI())
{
MsgReportPipes *msgToGUI = MsgReportPipes::create();
QList<AvailablePipeSource>& msgAvailablePipes = msgToGUI->getAvailablePipes();
msgAvailablePipes.append(availablePipes);
getMessageQueueToGUI()->push(msgToGUI);
}
}
}
void RadioAstronomy::applySettings(const RadioAstronomySettings& settings, bool force)
{
qDebug() << "RadioAstronomy::applySettings:"
<< " m_streamIndex: " << settings.m_streamIndex
<< " m_useReverseAPI: " << settings.m_useReverseAPI
<< " m_reverseAPIAddress: " << settings.m_reverseAPIAddress
<< " m_reverseAPIPort: " << settings.m_reverseAPIPort
<< " m_reverseAPIDeviceIndex: " << settings.m_reverseAPIDeviceIndex
<< " m_reverseAPIChannelIndex: " << settings.m_reverseAPIChannelIndex
<< " force: " << force;
QList<QString> reverseAPIKeys;
if ((settings.m_inputFrequencyOffset != m_settings.m_inputFrequencyOffset) || force) {
reverseAPIKeys.append("inputFrequencyOffset");
}
if ((settings.m_sampleRate != m_settings.m_sampleRate) || force) {
reverseAPIKeys.append("sampleRate");
}
if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || force) {
reverseAPIKeys.append("rfBandwidth");
}
if ((settings.m_integration != m_settings.m_integration) || force) {
reverseAPIKeys.append("integration");
}
if ((settings.m_fftSize != m_settings.m_fftSize) || force) {
reverseAPIKeys.append("fftSize");
}
if ((settings.m_fftWindow != m_settings.m_fftWindow) || force) {
reverseAPIKeys.append("fftWindow");
}
if ((settings.m_filterFreqs != m_settings.m_filterFreqs) || force) {
reverseAPIKeys.append("filterFreqs");
}
if ((settings.m_starTracker != m_settings.m_starTracker) || force) {
reverseAPIKeys.append("starTracker");
}
if ((settings.m_rotator != m_settings.m_rotator) || force) {
reverseAPIKeys.append("rotator");
}
if ((settings.m_runMode != m_settings.m_runMode) || force) {
reverseAPIKeys.append("runMode");
}
if ((settings.m_sweepStartAtTime != m_settings.m_sweepStartAtTime) || force) {
reverseAPIKeys.append("sweepStartAtTime");
}
if ((settings.m_sweepStartDateTime != m_settings.m_sweepStartDateTime) || force) {
reverseAPIKeys.append("sweepStartDateTime");
}
if ((settings.m_sweepType != m_settings.m_sweepType) || force) {
reverseAPIKeys.append("sweepType");
}
if ((settings.m_sweep1Start != m_settings.m_sweep1Start) || force) {
reverseAPIKeys.append("sweep1Start");
}
if ((settings.m_sweep1Stop != m_settings.m_sweep1Stop) || force) {
reverseAPIKeys.append("sweep1Stop");
}
if ((settings.m_sweep1Step != m_settings.m_sweep1Step) || force) {
reverseAPIKeys.append("sweep1Step");
}
if ((settings.m_sweep1Delay != m_settings.m_sweep1Delay) || force) {
reverseAPIKeys.append("sweep1Delay");
}
if ((settings.m_sweep2Start != m_settings.m_sweep2Start) || force) {
reverseAPIKeys.append("sweep2Start");
}
if ((settings.m_sweep2Stop != m_settings.m_sweep2Stop) || force) {
reverseAPIKeys.append("sweep2Stop");
}
if ((settings.m_sweep2Step != m_settings.m_sweep2Step) || force) {
reverseAPIKeys.append("sweep2Step");
}
if ((settings.m_sweep2Delay != m_settings.m_sweep2Delay) || force) {
reverseAPIKeys.append("sweep2Delay");
}
if ((m_settings.m_starTracker != settings.m_starTracker)
|| (!settings.m_starTracker.isEmpty() && (m_selectedPipe == nullptr)) // Change in available pipes
|| force)
{
if (!settings.m_starTracker.isEmpty())
{
m_selectedPipe = getPipeEndPoint(settings.m_starTracker, m_availablePipes);
if (m_selectedPipe == nullptr) {
qDebug() << "RadioAstronomy::applySettings: No plugin corresponding to target " << settings.m_starTracker;
}
}
reverseAPIKeys.append("starTracker");
}
if (m_settings.m_streamIndex != settings.m_streamIndex)
{
if (m_deviceAPI->getSampleMIMO()) // change of stream is possible for MIMO devices only
{
m_deviceAPI->removeChannelSinkAPI(this);
m_deviceAPI->removeChannelSink(this, m_settings.m_streamIndex);
m_deviceAPI->addChannelSink(this, settings.m_streamIndex);
m_deviceAPI->addChannelSinkAPI(this);
}
reverseAPIKeys.append("streamIndex");
}
m_basebandSink->getInputMessageQueue()->push(RadioAstronomyBaseband::MsgConfigureRadioAstronomyBaseband::create(settings, force));
m_worker->getInputMessageQueue()->push(RadioAstronomyWorker::MsgConfigureRadioAstronomyWorker::create(settings, force));
if (settings.m_useReverseAPI)
{
bool fullUpdate = ((m_settings.m_useReverseAPI != settings.m_useReverseAPI) && settings.m_useReverseAPI) ||
(m_settings.m_reverseAPIAddress != settings.m_reverseAPIAddress) ||
(m_settings.m_reverseAPIPort != settings.m_reverseAPIPort) ||
(m_settings.m_reverseAPIDeviceIndex != settings.m_reverseAPIDeviceIndex) ||
(m_settings.m_reverseAPIChannelIndex != settings.m_reverseAPIChannelIndex);
webapiReverseSendSettings(reverseAPIKeys, settings, fullUpdate || force);
}
m_settings = settings;
}
QByteArray RadioAstronomy::serialize() const
{
return m_settings.serialize();
}
bool RadioAstronomy::deserialize(const QByteArray& data)
{
if (m_settings.deserialize(data))
{
MsgConfigureRadioAstronomy *msg = MsgConfigureRadioAstronomy::create(m_settings, true);
m_inputMessageQueue.push(msg);
return true;
}
else
{
m_settings.resetToDefaults();
MsgConfigureRadioAstronomy *msg = MsgConfigureRadioAstronomy::create(m_settings, true);
m_inputMessageQueue.push(msg);
return false;
}
}
int RadioAstronomy::webapiSettingsGet(
SWGSDRangel::SWGChannelSettings& response,
QString& errorMessage)
{
(void) errorMessage;
response.setRadioAstronomySettings(new SWGSDRangel::SWGRadioAstronomySettings());
response.getRadioAstronomySettings()->init();
webapiFormatChannelSettings(response, m_settings);
return 200;
}
int RadioAstronomy::webapiSettingsPutPatch(
bool force,
const QStringList& channelSettingsKeys,
SWGSDRangel::SWGChannelSettings& response,
QString& errorMessage)
{
(void) errorMessage;
RadioAstronomySettings settings = m_settings;
webapiUpdateChannelSettings(settings, channelSettingsKeys, response);
MsgConfigureRadioAstronomy *msg = MsgConfigureRadioAstronomy::create(settings, force);
m_inputMessageQueue.push(msg);
qDebug("RadioAstronomy::webapiSettingsPutPatch: forward to GUI: %p", m_guiMessageQueue);
if (m_guiMessageQueue) // forward to GUI if any
{
MsgConfigureRadioAstronomy *msgToGUI = MsgConfigureRadioAstronomy::create(settings, force);
m_guiMessageQueue->push(msgToGUI);
}
webapiFormatChannelSettings(response, settings);
return 200;
}
int RadioAstronomy::webapiActionsPost(
const QStringList& channelActionsKeys,
SWGSDRangel::SWGChannelActions& query,
QString& errorMessage)
{
SWGSDRangel::SWGRadioAstronomyActions *swgRadioAstronomyActions = query.getRadioAstronomyActions();
if (swgRadioAstronomyActions)
{
if (channelActionsKeys.contains("start"))
{
getInputMessageQueue()->push(MsgStartSweep::create());
return 202;
}
else
{
errorMessage = "Unknown action";
return 400;
}
}
else
{
errorMessage = "Missing RadioAstronomyActions in query";
return 400;
}
}
void RadioAstronomy::webapiUpdateChannelSettings(
RadioAstronomySettings& settings,
const QStringList& channelSettingsKeys,
SWGSDRangel::SWGChannelSettings& response)
{
if (channelSettingsKeys.contains("inputFrequencyOffset")) {
settings.m_inputFrequencyOffset = response.getRadioAstronomySettings()->getInputFrequencyOffset();
}
if (channelSettingsKeys.contains("sampleRate")) {
settings.m_sampleRate = response.getRadioAstronomySettings()->getSampleRate();
}
if (channelSettingsKeys.contains("rfBandwidth")) {
settings.m_rfBandwidth = response.getRadioAstronomySettings()->getRfBandwidth();
}
if (channelSettingsKeys.contains("integration")) {
settings.m_integration = response.getRadioAstronomySettings()->getIntegration();
}
if (channelSettingsKeys.contains("fftSize")) {
settings.m_fftSize = response.getRadioAstronomySettings()->getFftSize();
}
if (channelSettingsKeys.contains("fftWindow")) {
settings.m_fftWindow = (RadioAstronomySettings::FFTWindow)response.getRadioAstronomySettings()->getFftWindow();
}
if (channelSettingsKeys.contains("filterFreqs")) {
settings.m_filterFreqs = *response.getRadioAstronomySettings()->getFilterFreqs();
}
if (channelSettingsKeys.contains("starTracker")) {
settings.m_starTracker = *response.getRadioAstronomySettings()->getStarTracker();
}
if (channelSettingsKeys.contains("rotator")) {
settings.m_rotator = *response.getRadioAstronomySettings()->getRotator();
}
if (channelSettingsKeys.contains("runMode")) {
settings.m_runMode = (RadioAstronomySettings::RunMode)response.getRadioAstronomySettings()->getRunMode();
}
if (channelSettingsKeys.contains("sweepStartAtTime")) {
settings.m_sweepStartAtTime = (bool)response.getRadioAstronomySettings()->getSweepStartAtTime();
}
if (channelSettingsKeys.contains("sweepStartDateTime")) {
settings.m_sweepStartDateTime = QDateTime::fromString(*response.getRadioAstronomySettings()->getRotator(), Qt::ISODate);
}
if (channelSettingsKeys.contains("sweepType")) {
settings.m_sweepType = (RadioAstronomySettings::SweepType)response.getRadioAstronomySettings()->getSweepType();
}
if (channelSettingsKeys.contains("sweep1Start")) {
settings.m_sweep1Start = response.getRadioAstronomySettings()->getSweep1Start();
}
if (channelSettingsKeys.contains("sweep1Stop")) {
settings.m_sweep1Stop = response.getRadioAstronomySettings()->getSweep1Stop();
}
if (channelSettingsKeys.contains("sweep1Step")) {
settings.m_sweep1Step = response.getRadioAstronomySettings()->getSweep1Step();
}
if (channelSettingsKeys.contains("sweep1Delay")) {
settings.m_sweep1Delay = response.getRadioAstronomySettings()->getSweep1Delay();
}
if (channelSettingsKeys.contains("sweep12Start")) {
settings.m_sweep2Start = response.getRadioAstronomySettings()->getSweep2Start();
}
if (channelSettingsKeys.contains("sweep12Stop")) {
settings.m_sweep2Stop = response.getRadioAstronomySettings()->getSweep2Stop();
}
if (channelSettingsKeys.contains("sweep2Step")) {
settings.m_sweep2Step = response.getRadioAstronomySettings()->getSweep2Step();
}
if (channelSettingsKeys.contains("sweep2Delay")) {
settings.m_sweep2Delay = response.getRadioAstronomySettings()->getSweep2Delay();
}
if (channelSettingsKeys.contains("rgbColor")) {
settings.m_rgbColor = response.getRadioAstronomySettings()->getRgbColor();
}
if (channelSettingsKeys.contains("title")) {
settings.m_title = *response.getRadioAstronomySettings()->getTitle();
}
if (channelSettingsKeys.contains("streamIndex")) {
settings.m_streamIndex = response.getRadioAstronomySettings()->getStreamIndex();
}
if (channelSettingsKeys.contains("useReverseAPI")) {
settings.m_useReverseAPI = response.getRadioAstronomySettings()->getUseReverseApi() != 0;
}
if (channelSettingsKeys.contains("reverseAPIAddress")) {
settings.m_reverseAPIAddress = *response.getRadioAstronomySettings()->getReverseApiAddress();
}
if (channelSettingsKeys.contains("reverseAPIPort")) {
settings.m_reverseAPIPort = response.getRadioAstronomySettings()->getReverseApiPort();
}
if (channelSettingsKeys.contains("reverseAPIDeviceIndex")) {
settings.m_reverseAPIDeviceIndex = response.getRadioAstronomySettings()->getReverseApiDeviceIndex();
}
if (channelSettingsKeys.contains("reverseAPIChannelIndex")) {
settings.m_reverseAPIChannelIndex = response.getRadioAstronomySettings()->getReverseApiChannelIndex();
}
if (settings.m_channelMarker && channelSettingsKeys.contains("channelMarker")) {
settings.m_channelMarker->updateFrom(channelSettingsKeys, response.getRadioAstronomySettings()->getChannelMarker());
}
if (settings.m_rollupState && channelSettingsKeys.contains("rollupState")) {
settings.m_rollupState->updateFrom(channelSettingsKeys, response.getRadioAstronomySettings()->getRollupState());
}
}
void RadioAstronomy::webapiFormatChannelSettings(SWGSDRangel::SWGChannelSettings& response, const RadioAstronomySettings& settings)
{
response.getRadioAstronomySettings()->setInputFrequencyOffset(settings.m_inputFrequencyOffset);
response.getRadioAstronomySettings()->setSampleRate(settings.m_sampleRate);
response.getRadioAstronomySettings()->setRfBandwidth(settings.m_rfBandwidth);
response.getRadioAstronomySettings()->setIntegration(settings.m_integration);
response.getRadioAstronomySettings()->setFftSize(settings.m_fftSize);
response.getRadioAstronomySettings()->setFftWindow((int)settings.m_fftWindow);
response.getRadioAstronomySettings()->setFilterFreqs(new QString(settings.m_filterFreqs));
response.getRadioAstronomySettings()->setStarTracker(new QString(settings.m_starTracker));
response.getRadioAstronomySettings()->setRotator(new QString(settings.m_rotator));
response.getRadioAstronomySettings()->setRunMode((int)settings.m_runMode);
response.getRadioAstronomySettings()->setSweepStartAtTime((int)settings.m_sweepStartAtTime);
response.getRadioAstronomySettings()->setSweepStartDateTime(new QString(settings.m_sweepStartDateTime.toString(Qt::ISODate)));
response.getRadioAstronomySettings()->setSweepType((int)settings.m_sweepType);
response.getRadioAstronomySettings()->setSweep1Start(settings.m_sweep1Start);
response.getRadioAstronomySettings()->setSweep1Stop(settings.m_sweep1Stop);
response.getRadioAstronomySettings()->setSweep1Step(settings.m_sweep1Step);
response.getRadioAstronomySettings()->setSweep1Delay(settings.m_sweep1Delay);
response.getRadioAstronomySettings()->setSweep2Start(settings.m_sweep2Start);
response.getRadioAstronomySettings()->setSweep2Stop(settings.m_sweep2Stop);
response.getRadioAstronomySettings()->setSweep2Step(settings.m_sweep2Step);
response.getRadioAstronomySettings()->setSweep2Delay(settings.m_sweep2Delay);
response.getRadioAstronomySettings()->setRgbColor(settings.m_rgbColor);
if (response.getRadioAstronomySettings()->getTitle()) {
*response.getRadioAstronomySettings()->getTitle() = settings.m_title;
} else {
response.getRadioAstronomySettings()->setTitle(new QString(settings.m_title));
}
response.getRadioAstronomySettings()->setStreamIndex(settings.m_streamIndex);
response.getRadioAstronomySettings()->setUseReverseApi(settings.m_useReverseAPI ? 1 : 0);
if (response.getRadioAstronomySettings()->getReverseApiAddress()) {
*response.getRadioAstronomySettings()->getReverseApiAddress() = settings.m_reverseAPIAddress;
} else {
response.getRadioAstronomySettings()->setReverseApiAddress(new QString(settings.m_reverseAPIAddress));
}
response.getRadioAstronomySettings()->setReverseApiPort(settings.m_reverseAPIPort);
response.getRadioAstronomySettings()->setReverseApiDeviceIndex(settings.m_reverseAPIDeviceIndex);
response.getRadioAstronomySettings()->setReverseApiChannelIndex(settings.m_reverseAPIChannelIndex);
if (settings.m_channelMarker)
{
if (response.getRadioAstronomySettings()->getChannelMarker())
{
settings.m_channelMarker->formatTo(response.getRadioAstronomySettings()->getChannelMarker());
}
else
{
SWGSDRangel::SWGChannelMarker *swgChannelMarker = new SWGSDRangel::SWGChannelMarker();
settings.m_channelMarker->formatTo(swgChannelMarker);
response.getRadioAstronomySettings()->setChannelMarker(swgChannelMarker);
}
}
if (settings.m_rollupState)
{
if (response.getRadioAstronomySettings()->getRollupState())
{
settings.m_rollupState->formatTo(response.getRadioAstronomySettings()->getRollupState());
}
else
{
SWGSDRangel::SWGRollupState *swgRollupState = new SWGSDRangel::SWGRollupState();
settings.m_rollupState->formatTo(swgRollupState);
response.getRadioAstronomySettings()->setRollupState(swgRollupState);
}
}
}
void RadioAstronomy::webapiReverseSendSettings(QList<QString>& channelSettingsKeys, const RadioAstronomySettings& settings, bool force)
{
SWGSDRangel::SWGChannelSettings *swgChannelSettings = new SWGSDRangel::SWGChannelSettings();
webapiFormatChannelSettings(channelSettingsKeys, swgChannelSettings, settings, force);
QString channelSettingsURL = QString("http://%1:%2/sdrangel/deviceset/%3/channel/%4/settings")
.arg(settings.m_reverseAPIAddress)
.arg(settings.m_reverseAPIPort)
.arg(settings.m_reverseAPIDeviceIndex)
.arg(settings.m_reverseAPIChannelIndex);
m_networkRequest.setUrl(QUrl(channelSettingsURL));
m_networkRequest.setHeader(QNetworkRequest::ContentTypeHeader, "application/json");
QBuffer *buffer = new QBuffer();
buffer->open((QBuffer::ReadWrite));
buffer->write(swgChannelSettings->asJson().toUtf8());
buffer->seek(0);
// Always use PATCH to avoid passing reverse API settings
QNetworkReply *reply = m_networkManager->sendCustomRequest(m_networkRequest, "PATCH", buffer);
buffer->setParent(reply);
delete swgChannelSettings;
}
void RadioAstronomy::webapiFormatChannelSettings(
QList<QString>& channelSettingsKeys,
SWGSDRangel::SWGChannelSettings *swgChannelSettings,
const RadioAstronomySettings& settings,
bool force
)
{
swgChannelSettings->setDirection(0); // Single sink (Rx)
swgChannelSettings->setOriginatorChannelIndex(getIndexInDeviceSet());
swgChannelSettings->setOriginatorDeviceSetIndex(getDeviceSetIndex());
swgChannelSettings->setChannelType(new QString("RadioAstronomy"));
swgChannelSettings->setRadioAstronomySettings(new SWGSDRangel::SWGRadioAstronomySettings());
SWGSDRangel::SWGRadioAstronomySettings *swgRadioAstronomySettings = swgChannelSettings->getRadioAstronomySettings();
// transfer data that has been modified. When force is on transfer all data except reverse API data
if (channelSettingsKeys.contains("inputFrequencyOffset") || force) {
swgRadioAstronomySettings->setInputFrequencyOffset(settings.m_inputFrequencyOffset);
}
if (channelSettingsKeys.contains("sampleRate") || force) {
swgRadioAstronomySettings->setInputFrequencyOffset(settings.m_sampleRate);
}
if (channelSettingsKeys.contains("rfBandwidth") || force) {
swgRadioAstronomySettings->setRfBandwidth(settings.m_rfBandwidth);
}
if (channelSettingsKeys.contains("integration") || force) {
swgRadioAstronomySettings->setRfBandwidth(settings.m_integration);
}
if (channelSettingsKeys.contains("fftSize") || force) {
swgRadioAstronomySettings->setRfBandwidth(settings.m_fftSize);
}
if (channelSettingsKeys.contains("fftWindow") || force) {
swgRadioAstronomySettings->setRfBandwidth((int)settings.m_fftWindow);
}
if (channelSettingsKeys.contains("filterFreqs") || force) {
swgRadioAstronomySettings->setFilterFreqs(new QString(settings.m_filterFreqs));
}
if (channelSettingsKeys.contains("starTracker") || force) {
swgRadioAstronomySettings->setStarTracker(new QString(settings.m_starTracker));
}
if (channelSettingsKeys.contains("rotator") || force) {
swgRadioAstronomySettings->setRotator(new QString(settings.m_rotator));
}
if (channelSettingsKeys.contains("runMode") || force) {
swgRadioAstronomySettings->setRunMode((int)settings.m_runMode);
}
if (channelSettingsKeys.contains("sweepStartAtTime") || force) {
swgRadioAstronomySettings->setSweepStartAtTime((int)settings.m_sweepStartAtTime);
}
if (channelSettingsKeys.contains("sweepStartDateTime") || force) {
swgRadioAstronomySettings->setSweepStartDateTime(new QString(settings.m_sweepStartDateTime.toString(Qt::ISODate)));
}
if (channelSettingsKeys.contains("sweepType") || force) {
swgRadioAstronomySettings->setSweepType(settings.m_sweepType);
}
if (channelSettingsKeys.contains("sweep1Start") || force) {
swgRadioAstronomySettings->setSweep1Start(settings.m_sweep1Start);
}
if (channelSettingsKeys.contains("sweep1Stop") || force) {
swgRadioAstronomySettings->setSweep1Stop(settings.m_sweep1Stop);
}
if (channelSettingsKeys.contains("sweep1Step") || force) {
swgRadioAstronomySettings->setSweep1Step(settings.m_sweep1Step);
}
if (channelSettingsKeys.contains("sweep2Delay") || force) {
swgRadioAstronomySettings->setSweep2Delay(settings.m_sweep2Delay);
}
if (channelSettingsKeys.contains("sweep2Start") || force) {
swgRadioAstronomySettings->setSweep2Start(settings.m_sweep2Start);
}
if (channelSettingsKeys.contains("sweep2Stop") || force) {
swgRadioAstronomySettings->setSweep2Stop(settings.m_sweep2Stop);
}
if (channelSettingsKeys.contains("sweep2Step") || force) {
swgRadioAstronomySettings->setSweep2Step(settings.m_sweep2Step);
}
if (channelSettingsKeys.contains("sweep2Delay") || force) {
swgRadioAstronomySettings->setSweep2Delay(settings.m_sweep2Delay);
}
if (channelSettingsKeys.contains("rgbColor") || force) {
swgRadioAstronomySettings->setRgbColor(settings.m_rgbColor);
}
if (channelSettingsKeys.contains("title") || force) {
swgRadioAstronomySettings->setTitle(new QString(settings.m_title));
}
if (channelSettingsKeys.contains("streamIndex") || force) {
swgRadioAstronomySettings->setStreamIndex(settings.m_streamIndex);
}
if (settings.m_channelMarker && (channelSettingsKeys.contains("channelMarker") || force))
{
SWGSDRangel::SWGChannelMarker *swgChannelMarker = new SWGSDRangel::SWGChannelMarker();
settings.m_channelMarker->formatTo(swgChannelMarker);
swgRadioAstronomySettings->setChannelMarker(swgChannelMarker);
}
if (settings.m_rollupState && (channelSettingsKeys.contains("rollupState") || force))
{
SWGSDRangel::SWGRollupState *swgRollupState = new SWGSDRangel::SWGRollupState();
settings.m_rollupState->formatTo(swgRollupState);
swgRadioAstronomySettings->setRollupState(swgRollupState);
}
}
void RadioAstronomy::networkManagerFinished(QNetworkReply *reply)
{
QNetworkReply::NetworkError replyError = reply->error();
if (replyError)
{
qWarning() << "RadioAstronomy::networkManagerFinished:"
<< " error(" << (int) replyError
<< "): " << replyError
<< ": " << reply->errorString();
}
else
{
QString answer = reply->readAll();
answer.chop(1); // remove last \n
qDebug("RadioAstronomy::networkManagerFinished: reply:\n%s", answer.toStdString().c_str());
}
reply->deleteLater();
}
void RadioAstronomy::handleChannelMessages()
{
Message* message;
while ((message = m_channelMessageQueue.pop()) != nullptr)
{
if (handleMessage(*message)) {
delete message;
}
}
}