mirror of
https://github.com/f4exb/sdrangel.git
synced 2024-11-14 12:22:00 -05:00
455 lines
16 KiB
C++
455 lines
16 KiB
C++
///////////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2019-2020 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
|
|
// //
|
|
// This program is free software; you can redistribute it and/or modify //
|
|
// it under the terms of the GNU General Public License as published by //
|
|
// the Free Software Foundation as version 3 of the License, or //
|
|
// (at your option) any later version. //
|
|
// //
|
|
// This program is distributed in the hope that it will be useful, //
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
|
// GNU General Public License V3 for more details. //
|
|
// //
|
|
// You should have received a copy of the GNU General Public License //
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include <QDebug>
|
|
|
|
#include "dsp/basebandsamplesink.h"
|
|
#include "util/db.h"
|
|
|
|
#include "udpsourcesource.h"
|
|
|
|
UDPSourceSource::UDPSourceSource() :
|
|
m_channelSampleRate(48000),
|
|
m_channelFrequencyOffset(0),
|
|
m_squelch(1e-6),
|
|
m_spectrumSink(nullptr),
|
|
m_spectrumChunkSize(2160),
|
|
m_spectrumChunkCounter(0),
|
|
m_magsq(1e-10),
|
|
m_movingAverage(16, 1e-10),
|
|
m_inMovingAverage(480, 1e-10),
|
|
m_sampleRateSum(0),
|
|
m_sampleRateAvgCounter(0),
|
|
m_levelCalcCount(0),
|
|
m_peakLevel(0.0f),
|
|
m_levelSum(0.0f),
|
|
m_levelNbSamples(480),
|
|
m_squelchOpen(false),
|
|
m_squelchOpenCount(0),
|
|
m_squelchCloseCount(0),
|
|
m_squelchThreshold(4800),
|
|
m_modPhasor(0.0f),
|
|
m_SSBFilterBufferIndex(0)
|
|
{
|
|
m_SSBFilter = new fftfilt(m_settings.m_lowCutoff / m_settings.m_inputSampleRate, m_settings.m_rfBandwidth / m_settings.m_inputSampleRate, m_ssbFftLen);
|
|
m_SSBFilterBuffer = new Complex[m_ssbFftLen>>1]; // filter returns data exactly half of its size
|
|
m_magsq = 0.0;
|
|
|
|
m_udpHandler.start();
|
|
|
|
applySettings(m_settings, true);
|
|
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
|
|
}
|
|
|
|
UDPSourceSource::~UDPSourceSource()
|
|
{
|
|
m_udpHandler.stop();
|
|
delete m_SSBFilter;
|
|
delete[] m_SSBFilterBuffer;
|
|
}
|
|
|
|
void UDPSourceSource::setUDPFeedbackMessageQueue(MessageQueue *messageQueue)
|
|
{
|
|
m_udpHandler.setFeedbackMessageQueue(messageQueue);
|
|
}
|
|
|
|
void UDPSourceSource::pull(SampleVector::iterator begin, unsigned int nbSamples)
|
|
{
|
|
std::for_each(
|
|
begin,
|
|
begin + nbSamples,
|
|
[this](Sample& s) {
|
|
pullOne(s);
|
|
}
|
|
);
|
|
}
|
|
|
|
void UDPSourceSource::pullOne(Sample& sample)
|
|
{
|
|
if (m_settings.m_channelMute)
|
|
{
|
|
sample.m_real = 0.0f;
|
|
sample.m_imag = 0.0f;
|
|
initSquelch(false);
|
|
return;
|
|
}
|
|
|
|
Complex ci;
|
|
|
|
if (m_interpolatorDistance > 1.0f) // decimate
|
|
{
|
|
modulateSample();
|
|
|
|
while (!m_interpolator.decimate(&m_interpolatorDistanceRemain, m_modSample, &ci))
|
|
{
|
|
modulateSample();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, m_modSample, &ci))
|
|
{
|
|
modulateSample();
|
|
}
|
|
}
|
|
|
|
m_interpolatorDistanceRemain += m_interpolatorDistance;
|
|
|
|
ci *= m_carrierNco.nextIQ(); // shift to carrier frequency
|
|
double magsq = ci.real() * ci.real() + ci.imag() * ci.imag();
|
|
magsq /= (SDR_TX_SCALED*SDR_TX_SCALED);
|
|
m_movingAverage.feed(magsq);
|
|
m_magsq = m_movingAverage.average();
|
|
|
|
sample.m_real = (FixReal) ci.real();
|
|
sample.m_imag = (FixReal) ci.imag();
|
|
}
|
|
|
|
void UDPSourceSource::modulateSample()
|
|
{
|
|
if (m_settings.m_sampleFormat == UDPSourceSettings::FormatSnLE) // Linear I/Q transponding
|
|
{
|
|
Sample s;
|
|
|
|
m_udpHandler.readSample(s);
|
|
|
|
uint64_t magsq = s.m_real * s.m_real + s.m_imag * s.m_imag;
|
|
m_inMovingAverage.feed(magsq/(SDR_TX_SCALED*SDR_TX_SCALED));
|
|
m_inMagsq = m_inMovingAverage.average();
|
|
|
|
calculateSquelch(m_inMagsq);
|
|
|
|
if (m_squelchOpen)
|
|
{
|
|
m_modSample.real(s.m_real * m_settings.m_gainOut);
|
|
m_modSample.imag(s.m_imag * m_settings.m_gainOut);
|
|
calculateLevel(m_modSample);
|
|
}
|
|
else
|
|
{
|
|
m_modSample.real(0.0f);
|
|
m_modSample.imag(0.0f);
|
|
}
|
|
}
|
|
else if (m_settings.m_sampleFormat == UDPSourceSettings::FormatNFM)
|
|
{
|
|
qint16 t;
|
|
readMonoSample(t);
|
|
|
|
m_inMovingAverage.feed((t*t)/1073741824.0);
|
|
m_inMagsq = m_inMovingAverage.average();
|
|
|
|
calculateSquelch(m_inMagsq);
|
|
|
|
if (m_squelchOpen)
|
|
{
|
|
m_modPhasor += (m_settings.m_fmDeviation / m_settings.m_inputSampleRate) * (t / SDR_TX_SCALEF) * M_PI * 2.0f;
|
|
m_modSample.real(cos(m_modPhasor) * 0.3162292f * SDR_TX_SCALEF * m_settings.m_gainOut);
|
|
m_modSample.imag(sin(m_modPhasor) * 0.3162292f * SDR_TX_SCALEF * m_settings.m_gainOut);
|
|
calculateLevel(m_modSample);
|
|
}
|
|
else
|
|
{
|
|
m_modSample.real(0.0f);
|
|
m_modSample.imag(0.0f);
|
|
}
|
|
}
|
|
else if (m_settings.m_sampleFormat == UDPSourceSettings::FormatAM)
|
|
{
|
|
qint16 t;
|
|
readMonoSample(t);
|
|
m_inMovingAverage.feed((t*t)/(SDR_TX_SCALED*SDR_TX_SCALED));
|
|
m_inMagsq = m_inMovingAverage.average();
|
|
|
|
calculateSquelch(m_inMagsq);
|
|
|
|
if (m_squelchOpen)
|
|
{
|
|
m_modSample.real(((t / SDR_TX_SCALEF)*m_settings.m_amModFactor*m_settings.m_gainOut + 1.0f) * (SDR_TX_SCALEF/2)); // modulate and scale zero frequency carrier
|
|
m_modSample.imag(0.0f);
|
|
calculateLevel(m_modSample);
|
|
}
|
|
else
|
|
{
|
|
m_modSample.real(0.0f);
|
|
m_modSample.imag(0.0f);
|
|
}
|
|
}
|
|
else if ((m_settings.m_sampleFormat == UDPSourceSettings::FormatLSB) || (m_settings.m_sampleFormat == UDPSourceSettings::FormatUSB))
|
|
{
|
|
qint16 t;
|
|
Complex c, ci;
|
|
fftfilt::cmplx *filtered;
|
|
int n_out = 0;
|
|
|
|
readMonoSample(t);
|
|
m_inMovingAverage.feed((t*t)/(SDR_TX_SCALED*SDR_TX_SCALED));
|
|
m_inMagsq = m_inMovingAverage.average();
|
|
|
|
calculateSquelch(m_inMagsq);
|
|
|
|
if (m_squelchOpen)
|
|
{
|
|
ci.real((t / SDR_TX_SCALEF) * m_settings.m_gainOut);
|
|
ci.imag(0.0f);
|
|
|
|
n_out = m_SSBFilter->runSSB(ci, &filtered, (m_settings.m_sampleFormat == UDPSourceSettings::FormatUSB));
|
|
|
|
if (n_out > 0)
|
|
{
|
|
memcpy((void *) m_SSBFilterBuffer, (const void *) filtered, n_out*sizeof(Complex));
|
|
m_SSBFilterBufferIndex = 0;
|
|
}
|
|
|
|
c = m_SSBFilterBuffer[m_SSBFilterBufferIndex];
|
|
m_modSample.real(m_SSBFilterBuffer[m_SSBFilterBufferIndex].real() * SDR_TX_SCALEF);
|
|
m_modSample.imag(m_SSBFilterBuffer[m_SSBFilterBufferIndex].imag() * SDR_TX_SCALEF);
|
|
m_SSBFilterBufferIndex++;
|
|
|
|
calculateLevel(m_modSample);
|
|
}
|
|
else
|
|
{
|
|
m_modSample.real(0.0f);
|
|
m_modSample.imag(0.0f);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
m_modSample.real(0.0f);
|
|
m_modSample.imag(0.0f);
|
|
initSquelch(false);
|
|
}
|
|
|
|
if (m_spectrumSink)
|
|
{
|
|
Sample s;
|
|
s.m_real = (FixReal) m_modSample.real();
|
|
s.m_imag = (FixReal) m_modSample.imag();
|
|
m_sampleBuffer.push_back(s);
|
|
m_spectrumChunkCounter++;
|
|
|
|
if (m_spectrumChunkCounter == m_spectrumChunkSize)
|
|
{
|
|
m_spectrumSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), false);
|
|
m_sampleBuffer.clear();
|
|
m_spectrumChunkCounter = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void UDPSourceSource::calculateLevel(Real sample)
|
|
{
|
|
if (m_levelCalcCount < m_levelNbSamples)
|
|
{
|
|
m_peakLevel = std::max(std::fabs(m_peakLevel), sample);
|
|
m_levelSum += sample * sample;
|
|
m_levelCalcCount++;
|
|
}
|
|
else
|
|
{
|
|
m_rmsLevel = m_levelSum > 0.0 ? sqrt(m_levelSum / m_levelNbSamples) : 0.0;
|
|
m_peakLevelOut = m_peakLevel;
|
|
m_peakLevel = 0.0f;
|
|
m_levelSum = 0.0f;
|
|
m_levelCalcCount = 0;
|
|
}
|
|
}
|
|
|
|
void UDPSourceSource::calculateLevel(Complex sample)
|
|
{
|
|
Real t = std::abs(sample);
|
|
|
|
if (m_levelCalcCount < m_levelNbSamples)
|
|
{
|
|
m_peakLevel = std::max(std::fabs(m_peakLevel), t);
|
|
m_levelSum += (t * t);
|
|
m_levelCalcCount++;
|
|
}
|
|
else
|
|
{
|
|
m_rmsLevel = m_levelSum > 0.0 ? sqrt((m_levelSum/(SDR_TX_SCALED*SDR_TX_SCALED)) / m_levelNbSamples) : 0.0;
|
|
m_peakLevelOut = m_peakLevel;
|
|
m_peakLevel = 0.0f;
|
|
m_levelSum = 0.0f;
|
|
m_levelCalcCount = 0;
|
|
}
|
|
}
|
|
|
|
void UDPSourceSource::resetReadIndex()
|
|
{
|
|
m_udpHandler.resetReadIndex();
|
|
}
|
|
|
|
void UDPSourceSource::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
|
|
{
|
|
qDebug() << "UDPSourceSource::applyChannelSettings:"
|
|
<< " channelSampleRate: " << channelSampleRate
|
|
<< " channelFrequencyOffset: " << channelFrequencyOffset;
|
|
|
|
if ((channelFrequencyOffset != m_channelFrequencyOffset) ||
|
|
(channelSampleRate != m_channelSampleRate) || force)
|
|
{
|
|
m_carrierNco.setFreq(channelFrequencyOffset, channelSampleRate);
|
|
}
|
|
|
|
if (((channelSampleRate != m_channelSampleRate) && (!m_settings.m_autoRWBalance)) || force)
|
|
{
|
|
m_interpolatorDistanceRemain = 0;
|
|
m_interpolatorConsumed = false;
|
|
m_interpolatorDistance = (Real) m_settings.m_inputSampleRate / (Real) channelSampleRate;
|
|
m_interpolator.create(48, m_settings.m_inputSampleRate, m_settings.m_rfBandwidth / 2.2, 3.0);
|
|
}
|
|
|
|
m_channelSampleRate = channelSampleRate;
|
|
m_channelFrequencyOffset = channelFrequencyOffset;
|
|
}
|
|
|
|
void UDPSourceSource::applySettings(const UDPSourceSettings& settings, bool force)
|
|
{
|
|
qDebug() << "UDPSourceSource::applySettings:"
|
|
<< " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
|
|
<< " m_sampleFormat: " << settings.m_sampleFormat
|
|
<< " m_inputSampleRate: " << settings.m_inputSampleRate
|
|
<< " m_rfBandwidth: " << settings.m_rfBandwidth
|
|
<< " m_lowCutoff: " << settings.m_lowCutoff
|
|
<< " m_fmDeviation: " << settings.m_fmDeviation
|
|
<< " m_amModFactor: " << settings.m_amModFactor
|
|
<< " m_udpAddressStr: " << settings.m_udpAddress
|
|
<< " m_udpPort: " << settings.m_udpPort
|
|
<< " m_multicastAddress: " << settings.m_multicastAddress
|
|
<< " m_multicastJoin: " << settings.m_multicastJoin
|
|
<< " m_channelMute: " << settings.m_channelMute
|
|
<< " m_gainIn: " << settings.m_gainIn
|
|
<< " m_gainOut: " << settings.m_gainOut
|
|
<< " m_squelchGate: " << settings.m_squelchGate
|
|
<< " m_squelch: " << settings.m_squelch << "dB"
|
|
<< " m_squelchEnabled: " << settings.m_squelchEnabled
|
|
<< " m_autoRWBalance: " << settings.m_autoRWBalance
|
|
<< " m_stereoInput: " << settings.m_stereoInput
|
|
<< " force: " << force;
|
|
|
|
if((settings.m_rfBandwidth != m_settings.m_rfBandwidth) ||
|
|
(settings.m_lowCutoff != m_settings.m_lowCutoff) ||
|
|
(settings.m_inputSampleRate != m_settings.m_inputSampleRate) || force)
|
|
{
|
|
m_interpolatorDistanceRemain = 0;
|
|
m_interpolatorConsumed = false;
|
|
m_interpolatorDistance = (Real) settings.m_inputSampleRate / (Real) m_channelSampleRate;
|
|
m_interpolator.create(48, settings.m_inputSampleRate, settings.m_rfBandwidth / 2.2, 3.0);
|
|
m_actualInputSampleRate = settings.m_inputSampleRate;
|
|
m_udpHandler.resetReadIndex();
|
|
m_sampleRateSum = 0.0;
|
|
m_sampleRateAvgCounter = 0;
|
|
m_spectrumChunkSize = settings.m_inputSampleRate * 0.05; // 50 ms chunk
|
|
m_spectrumChunkCounter = 0;
|
|
m_levelNbSamples = settings.m_inputSampleRate * 0.01; // every 10 ms
|
|
m_levelCalcCount = 0;
|
|
m_peakLevel = 0.0f;
|
|
m_levelSum = 0.0f;
|
|
m_udpHandler.resizeBuffer(settings.m_inputSampleRate);
|
|
m_inMovingAverage.resize(settings.m_inputSampleRate * 0.01, 1e-10); // 10 ms
|
|
m_squelchThreshold = settings.m_inputSampleRate * settings.m_squelchGate;
|
|
initSquelch(m_squelchOpen);
|
|
m_SSBFilter->create_filter(settings.m_lowCutoff / settings.m_inputSampleRate, settings.m_rfBandwidth / settings.m_inputSampleRate);
|
|
}
|
|
|
|
if ((settings.m_squelch != m_settings.m_squelch) || force)
|
|
{
|
|
m_squelch = CalcDb::powerFromdB(settings.m_squelch);
|
|
}
|
|
|
|
if ((settings.m_squelchGate != m_settings.m_squelchGate) || force)
|
|
{
|
|
m_squelchThreshold = m_channelSampleRate * settings.m_squelchGate;
|
|
initSquelch(m_squelchOpen);
|
|
}
|
|
|
|
if ((settings.m_udpAddress != m_settings.m_udpAddress) ||
|
|
(settings.m_udpPort != m_settings.m_udpPort) ||
|
|
(settings.m_multicastAddress != m_settings.m_multicastAddress) ||
|
|
(settings.m_multicastJoin != m_settings.m_multicastJoin) || force)
|
|
{
|
|
m_udpHandler.configureUDPLink(settings.m_udpAddress, settings.m_udpPort, settings.m_multicastAddress, settings.m_multicastJoin);
|
|
}
|
|
|
|
if ((settings.m_channelMute != m_settings.m_channelMute) || force)
|
|
{
|
|
if (!settings.m_channelMute) {
|
|
m_udpHandler.resetReadIndex();
|
|
}
|
|
}
|
|
|
|
if ((settings.m_autoRWBalance != m_settings.m_autoRWBalance) || force)
|
|
{
|
|
m_udpHandler.setAutoRWBalance(settings.m_autoRWBalance);
|
|
|
|
if (!settings.m_autoRWBalance)
|
|
{
|
|
m_interpolatorDistanceRemain = 0;
|
|
m_interpolatorConsumed = false;
|
|
m_interpolatorDistance = (Real) settings.m_inputSampleRate / (Real) m_channelSampleRate;
|
|
m_interpolator.create(48, settings.m_inputSampleRate, settings.m_rfBandwidth / 2.2, 3.0);
|
|
m_actualInputSampleRate = settings.m_inputSampleRate;
|
|
m_udpHandler.resetReadIndex();
|
|
}
|
|
}
|
|
|
|
m_settings = settings;
|
|
}
|
|
|
|
void UDPSourceSource::sampleRateCorrection(float rawDeltaRatio, float correctionFactor)
|
|
{
|
|
float newSampleRate = m_actualInputSampleRate + correctionFactor * m_actualInputSampleRate;
|
|
|
|
// exclude values too way out nominal sample rate (20%)
|
|
if ((newSampleRate < m_settings.m_inputSampleRate * 1.2) && (newSampleRate > m_settings.m_inputSampleRate * 0.8))
|
|
{
|
|
m_actualInputSampleRate = newSampleRate;
|
|
|
|
if ((rawDeltaRatio > -0.05) && (rawDeltaRatio < 0.05))
|
|
{
|
|
if (m_sampleRateAvgCounter < m_sampleRateAverageItems)
|
|
{
|
|
m_sampleRateSum += m_actualInputSampleRate;
|
|
m_sampleRateAvgCounter++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
m_sampleRateSum = 0.0;
|
|
m_sampleRateAvgCounter = 0;
|
|
}
|
|
|
|
if (m_sampleRateAvgCounter == m_sampleRateAverageItems)
|
|
{
|
|
float avgRate = m_sampleRateSum / m_sampleRateAverageItems;
|
|
qDebug("UDPSourceSource::sampleRateCorrection: corr: %+.6f new rate: %.0f: avg rate: %.0f",
|
|
correctionFactor,
|
|
m_actualInputSampleRate,
|
|
avgRate);
|
|
m_actualInputSampleRate = avgRate;
|
|
m_sampleRateSum = 0.0;
|
|
m_sampleRateAvgCounter = 0;
|
|
}
|
|
|
|
m_interpolatorDistanceRemain = 0;
|
|
m_interpolatorConsumed = false;
|
|
m_interpolatorDistance = (Real) m_actualInputSampleRate / (Real) m_channelSampleRate;
|
|
}
|
|
}
|