1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-12-12 01:45:16 -05:00
sdrangel/sdrgui/gui/glspectrumgui.cpp

613 lines
16 KiB
C++

#include "gui/glspectrumgui.h"
#include "dsp/fftwindow.h"
#include "dsp/spectrumvis.h"
#include "gui/glspectrum.h"
#include "util/simpleserializer.h"
#include "ui_glspectrumgui.h"
GLSpectrumGUI::GLSpectrumGUI(QWidget* parent) :
QWidget(parent),
ui(new Ui::GLSpectrumGUI),
m_messageQueueToVis(0),
m_spectrumVis(0),
m_glSpectrum(0),
m_fftSize(1024),
m_fftOverlap(0),
m_fftWindow(FFTWindow::Hamming),
m_refLevel(0),
m_powerRange(100),
m_decay(1),
m_decayDivisor(1),
m_histogramStroke(30),
m_displayGridIntensity(5),
m_displayTraceIntensity(50),
m_displayWaterfall(true),
m_invertedWaterfall(false),
m_displayMaxHold(false),
m_displayCurrent(false),
m_displayHistogram(false),
m_displayGrid(false),
m_invert(true),
m_averagingMode(AvgModeNone),
m_averagingIndex(0),
m_averagingMaxScale(5),
m_averagingNb(0)
{
ui->setupUi(this);
on_linscale_toggled(false);
ui->refLevel->clear();
for(int ref = 0; ref >= -110; ref -= 5)
ui->refLevel->addItem(QString("%1").arg(ref));
ui->levelRange->clear();
for(int range = 100; range >= 5; range -= 5)
ui->levelRange->addItem(QString("%1").arg(range));
setAveragingCombo();
connect(&m_messageQueue, SIGNAL(messageEnqueued()), this, SLOT(handleInputMessages()));
}
GLSpectrumGUI::~GLSpectrumGUI()
{
delete ui;
}
void GLSpectrumGUI::setBuddies(MessageQueue* messageQueue, SpectrumVis* spectrumVis, GLSpectrum* glSpectrum)
{
m_messageQueueToVis = messageQueue;
m_spectrumVis = spectrumVis;
m_glSpectrum = glSpectrum;
m_glSpectrum->setMessageQueueToGUI(&m_messageQueue);
applySettings();
}
void GLSpectrumGUI::resetToDefaults()
{
m_fftSize = 1024;
m_fftOverlap = 0;
m_fftWindow = FFTWindow::Hamming;
m_refLevel = 0;
m_powerRange = 100;
m_decay = 1;
m_decayDivisor = 1;
m_histogramStroke = 30;
m_displayGridIntensity = 5,
m_displayWaterfall = true;
m_invertedWaterfall = false;
m_displayMaxHold = false;
m_displayHistogram = false;
m_displayGrid = false;
m_invert = true;
m_averagingMode = AvgModeNone;
m_averagingIndex = 0;
m_linear = false;
applySettings();
}
QByteArray GLSpectrumGUI::serialize() const
{
SimpleSerializer s(1);
s.writeS32(1, m_fftSize);
s.writeS32(2, m_fftOverlap);
s.writeS32(3, m_fftWindow);
s.writeReal(4, m_refLevel);
s.writeReal(5, m_powerRange);
s.writeBool(6, m_displayWaterfall);
s.writeBool(7, m_invertedWaterfall);
s.writeBool(8, m_displayMaxHold);
s.writeBool(9, m_displayHistogram);
s.writeS32(10, m_decay);
s.writeBool(11, m_displayGrid);
s.writeBool(12, m_invert);
s.writeS32(13, m_displayGridIntensity);
s.writeS32(14, m_decayDivisor);
s.writeS32(15, m_histogramStroke);
s.writeBool(16, m_displayCurrent);
s.writeS32(17, m_displayTraceIntensity);
s.writeReal(18, m_glSpectrum->getWaterfallShare());
s.writeS32(19, (int) m_averagingMode);
s.writeS32(20, (qint32) getAveragingValue(m_averagingIndex));
s.writeBool(21, m_linear);
return s.final();
}
bool GLSpectrumGUI::deserialize(const QByteArray& data)
{
SimpleDeserializer d(data);
if(!d.isValid()) {
resetToDefaults();
return false;
}
int tmp;
if(d.getVersion() == 1) {
d.readS32(1, &m_fftSize, 1024);
d.readS32(2, &m_fftOverlap, 0);
d.readS32(3, &m_fftWindow, FFTWindow::Hamming);
d.readReal(4, &m_refLevel, 0);
d.readReal(5, &m_powerRange, 100);
d.readBool(6, &m_displayWaterfall, true);
d.readBool(7, &m_invertedWaterfall, false);
d.readBool(8, &m_displayMaxHold, false);
d.readBool(9, &m_displayHistogram, false);
d.readS32(10, &m_decay, 1);
d.readBool(11, &m_displayGrid, false);
d.readBool(12, &m_invert, true);
d.readS32(13, &m_displayGridIntensity, 5);
d.readS32(14, &m_decayDivisor, 1);
d.readS32(15, &m_histogramStroke, 30);
d.readBool(16, &m_displayCurrent, false);
d.readS32(17, &m_displayTraceIntensity, 50);
Real waterfallShare;
d.readReal(18, &waterfallShare, 0.66);
d.readS32(19, &tmp, 0);
m_averagingMode = tmp < 0 ? AvgModeNone : tmp > 3 ? AvgModeMax : (AveragingMode) tmp;
d.readS32(20, &tmp, 0);
m_averagingIndex = getAveragingIndex(tmp);
m_averagingNb = getAveragingValue(m_averagingIndex);
d.readBool(21, &m_linear, false);
m_glSpectrum->setWaterfallShare(waterfallShare);
applySettings();
return true;
} else {
resetToDefaults();
return false;
}
}
void GLSpectrumGUI::applySettings()
{
ui->fftWindow->setCurrentIndex(m_fftWindow);
for(int i = 0; i < 6; i++) {
if(m_fftSize == (1 << (i + 7))) {
ui->fftSize->setCurrentIndex(i);
break;
}
}
ui->refLevel->setCurrentIndex(-m_refLevel / 5);
ui->levelRange->setCurrentIndex((100 - m_powerRange) / 5);
ui->averaging->setCurrentIndex(m_averagingIndex);
ui->averagingMode->setCurrentIndex((int) m_averagingMode);
ui->linscale->setChecked(m_linear);
ui->decay->setSliderPosition(m_decay);
ui->decayDivisor->setSliderPosition(m_decayDivisor);
ui->stroke->setSliderPosition(m_histogramStroke);
ui->waterfall->setChecked(m_displayWaterfall);
ui->maxHold->setChecked(m_displayMaxHold);
ui->current->setChecked(m_displayCurrent);
ui->histogram->setChecked(m_displayHistogram);
ui->invert->setChecked(m_invert);
ui->grid->setChecked(m_displayGrid);
ui->gridIntensity->setSliderPosition(m_displayGridIntensity);
ui->decay->setToolTip(QString("Decay: %1").arg(m_decay));
ui->decayDivisor->setToolTip(QString("Decay divisor: %1").arg(m_decayDivisor));
ui->stroke->setToolTip(QString("Stroke: %1").arg(m_histogramStroke));
ui->gridIntensity->setToolTip(QString("Grid intensity: %1").arg(m_displayGridIntensity));
ui->traceIntensity->setToolTip(QString("Trace intensity: %1").arg(m_displayTraceIntensity));
m_glSpectrum->setDisplayWaterfall(m_displayWaterfall);
m_glSpectrum->setInvertedWaterfall(m_invertedWaterfall);
m_glSpectrum->setDisplayMaxHold(m_displayMaxHold);
m_glSpectrum->setDisplayCurrent(m_displayCurrent);
m_glSpectrum->setDisplayHistogram(m_displayHistogram);
m_glSpectrum->setDecay(m_decay);
m_glSpectrum->setDecayDivisor(m_decayDivisor);
m_glSpectrum->setHistoStroke(m_histogramStroke);
m_glSpectrum->setInvertedWaterfall(m_invert);
m_glSpectrum->setDisplayGrid(m_displayGrid);
m_glSpectrum->setDisplayGridIntensity(m_displayGridIntensity);
m_glSpectrum->setLinear(m_linear);
if (m_spectrumVis) {
m_spectrumVis->configure(m_messageQueueToVis,
m_fftSize,
m_fftOverlap,
m_averagingNb,
m_averagingMode,
(FFTWindow::Function)m_fftWindow,
m_linear);
}
setAveragingToolitp();
}
void GLSpectrumGUI::on_fftWindow_currentIndexChanged(int index)
{
m_fftWindow = index;
if(m_spectrumVis != 0) {
m_spectrumVis->configure(m_messageQueueToVis,
m_fftSize,
m_fftOverlap,
m_averagingNb,
m_averagingMode,
(FFTWindow::Function)m_fftWindow,
m_linear);
}
}
void GLSpectrumGUI::on_fftSize_currentIndexChanged(int index)
{
m_fftSize = 1 << (7 + index);
if(m_spectrumVis != 0) {
m_spectrumVis->configure(m_messageQueueToVis,
m_fftSize,
m_fftOverlap,
m_averagingNb,
m_averagingMode,
(FFTWindow::Function)m_fftWindow,
m_linear);
}
setAveragingToolitp();
}
void GLSpectrumGUI::on_averagingMode_currentIndexChanged(int index)
{
m_averagingMode = index < 0 ? AvgModeNone : index > 3 ? AvgModeMax : (AveragingMode) index;
if (m_averagingMode == AvgModeMoving)
{
m_averagingMaxScale = 2;
setAveragingCombo();
m_averagingNb = m_averagingNb > 1000 ? 1000 : m_averagingNb;
}
else
{
m_averagingMaxScale = 5;
setAveragingCombo();
}
if(m_spectrumVis != 0) {
m_spectrumVis->configure(m_messageQueueToVis,
m_fftSize,
m_fftOverlap,
m_averagingNb,
m_averagingMode,
(FFTWindow::Function)m_fftWindow,
m_linear);
}
if (m_glSpectrum != 0)
{
if ((m_averagingMode == AvgModeFixed) || (m_averagingMode == AvgModeMax)) {
m_glSpectrum->setTimingRate(m_averagingNb == 0 ? 1 : m_averagingNb);
} else {
m_glSpectrum->setTimingRate(1);
}
}
}
void GLSpectrumGUI::on_averaging_currentIndexChanged(int index)
{
m_averagingIndex = index;
m_averagingNb = getAveragingValue(index);
if(m_spectrumVis != 0) {
m_spectrumVis->configure(m_messageQueueToVis,
m_fftSize,
m_fftOverlap,
m_averagingNb,
m_averagingMode,
(FFTWindow::Function)m_fftWindow,
m_linear);
}
if (m_glSpectrum != 0)
{
if ((m_averagingMode == AvgModeFixed) || (m_averagingMode == AvgModeMax)) {
m_glSpectrum->setTimingRate(m_averagingNb == 0 ? 1 : m_averagingNb);
} else {
m_glSpectrum->setTimingRate(1);
}
}
setAveragingToolitp();
}
void GLSpectrumGUI::on_linscale_toggled(bool checked)
{
m_linear = checked;
if(m_spectrumVis != 0) {
m_spectrumVis->configure(m_messageQueueToVis,
m_fftSize,
m_fftOverlap,
m_averagingNb,
m_averagingMode,
(FFTWindow::Function)m_fftWindow,
m_linear);
}
if(m_glSpectrum != 0)
{
Real refLevel = m_linear ? pow(10.0, m_refLevel/10.0) : m_refLevel;
Real powerRange = m_linear ? pow(10.0, m_refLevel/10.0) : m_powerRange;
qDebug("GLSpectrumGUI::on_linscale_toggled: refLevel: %e powerRange: %e", refLevel, powerRange);
m_glSpectrum->setReferenceLevel(refLevel);
m_glSpectrum->setPowerRange(powerRange);
m_glSpectrum->setLinear(m_linear);
}
}
void GLSpectrumGUI::on_refLevel_currentIndexChanged(int index)
{
m_refLevel = 0 - index * 5;
if(m_glSpectrum != 0)
{
Real refLevel = m_linear ? pow(10.0, m_refLevel/10.0) : m_refLevel;
Real powerRange = m_linear ? pow(10.0, m_refLevel/10.0) : m_powerRange;
qDebug("GLSpectrumGUI::on_refLevel_currentIndexChanged: refLevel: %e ", refLevel);
m_glSpectrum->setReferenceLevel(refLevel);
m_glSpectrum->setPowerRange(powerRange);
}
}
void GLSpectrumGUI::on_levelRange_currentIndexChanged(int index)
{
m_powerRange = 100 - index * 5;
if(m_glSpectrum != 0)
{
Real refLevel = m_linear ? pow(10.0, m_refLevel/10.0) : m_refLevel;
Real powerRange = m_linear ? pow(10.0, m_refLevel/10.0) : m_powerRange;
qDebug("GLSpectrumGUI::on_levelRange_currentIndexChanged: powerRange: %e", powerRange);
m_glSpectrum->setReferenceLevel(refLevel);
m_glSpectrum->setPowerRange(powerRange);
}
}
void GLSpectrumGUI::on_decay_valueChanged(int index)
{
m_decay = index;
ui->decay->setToolTip(QString("Decay: %1").arg(m_decay));
if(m_glSpectrum != 0) {
m_glSpectrum->setDecay(m_decay);
}
}
void GLSpectrumGUI::on_decayDivisor_valueChanged(int index)
{
m_decayDivisor = index;
//ui->decayDivisor->setToolTip(QString("Decay divisor: %1").arg(m_decayDivisor));
if(m_glSpectrum != 0) {
applySettings();
}
}
void GLSpectrumGUI::on_stroke_valueChanged(int index)
{
m_histogramStroke = index;
//ui->stroke->setToolTip(QString("Stroke: %1").arg(m_histogramStroke));
if(m_glSpectrum != 0) {
applySettings();
}
}
void GLSpectrumGUI::on_waterfall_toggled(bool checked)
{
m_displayWaterfall = checked;
if(m_glSpectrum != 0) {
m_glSpectrum->setDisplayWaterfall(m_displayWaterfall);
}
}
void GLSpectrumGUI::on_histogram_toggled(bool checked)
{
m_displayHistogram = checked;
if(m_glSpectrum != 0) {
m_glSpectrum->setDisplayHistogram(m_displayHistogram);
}
}
void GLSpectrumGUI::on_maxHold_toggled(bool checked)
{
m_displayMaxHold = checked;
if(m_glSpectrum != 0) {
m_glSpectrum->setDisplayMaxHold(m_displayMaxHold);
}
}
void GLSpectrumGUI::on_current_toggled(bool checked)
{
m_displayCurrent = checked;
if(m_glSpectrum != 0) {
m_glSpectrum->setDisplayCurrent(m_displayCurrent);
}
}
void GLSpectrumGUI::on_invert_toggled(bool checked)
{
m_invert = checked;
if(m_glSpectrum != 0) {
m_glSpectrum->setInvertedWaterfall(m_invert);
}
}
void GLSpectrumGUI::on_grid_toggled(bool checked)
{
m_displayGrid = checked;
if(m_glSpectrum != 0) {
m_glSpectrum->setDisplayGrid(m_displayGrid);
}
}
void GLSpectrumGUI::on_gridIntensity_valueChanged(int index)
{
m_displayGridIntensity = index;
ui->gridIntensity->setToolTip(QString("Grid intensity: %1").arg(m_displayGridIntensity));
if(m_glSpectrum != 0) {
m_glSpectrum->setDisplayGridIntensity(m_displayGridIntensity);
}
}
void GLSpectrumGUI::on_traceIntensity_valueChanged(int index)
{
m_displayTraceIntensity = index;
ui->traceIntensity->setToolTip(QString("Trace intensity: %1").arg(m_displayTraceIntensity));
if(m_glSpectrum != 0) {
m_glSpectrum->setDisplayTraceIntensity(m_displayTraceIntensity);
}
}
void GLSpectrumGUI::on_clearSpectrum_clicked(bool checked)
{
(void) checked;
if(m_glSpectrum != 0) {
m_glSpectrum->clearSpectrumHistogram();
}
}
int GLSpectrumGUI::getAveragingIndex(int averagingValue) const
{
if (averagingValue <= 1) {
return 0;
}
int v = averagingValue;
int j = 0;
for (int i = 0; i <= m_averagingMaxScale; i++)
{
if (v < 20)
{
if (v < 2) {
j = 0;
} else if (v < 5) {
j = 1;
} else if (v < 10) {
j = 2;
} else {
j = 3;
}
return 3*i + j;
}
v /= 10;
}
return 3*m_averagingMaxScale + 3;
}
int GLSpectrumGUI::getAveragingValue(int averagingIndex) const
{
if (averagingIndex <= 0) {
return 1;
}
int v = averagingIndex - 1;
int m = pow(10.0, v/3 > m_averagingMaxScale ? m_averagingMaxScale : v/3);
int x = 1;
if (v % 3 == 0) {
x = 2;
} else if (v % 3 == 1) {
x = 5;
} else if (v % 3 == 2) {
x = 10;
}
return x * m;
}
void GLSpectrumGUI::setAveragingCombo()
{
int index = ui->averaging->currentIndex();
ui->averaging->clear();
ui->averaging->addItem(QString("1"));
for (int i = 0; i <= m_averagingMaxScale; i++)
{
QString s;
int m = pow(10.0, i);
int x = 2*m;
setNumberStr(x, s);
ui->averaging->addItem(s);
x = 5*m;
setNumberStr(x, s);
ui->averaging->addItem(s);
x = 10*m;
setNumberStr(x, s);
ui->averaging->addItem(s);
}
ui->averaging->setCurrentIndex(index >= ui->averaging->count() ? ui->averaging->count() - 1 : index);
}
void GLSpectrumGUI::setNumberStr(int n, QString& s)
{
if (n < 1000) {
s = tr("%1").arg(n);
} else if (n < 100000) {
s = tr("%1k").arg(n/1000);
} else if (n < 1000000) {
s = tr("%1e5").arg(n/100000);
} else if (n < 1000000000) {
s = tr("%1M").arg(n/1000000);
} else {
s = tr("%1G").arg(n/1000000000);
}
}
void GLSpectrumGUI::setNumberStr(float v, int decimalPlaces, QString& s)
{
if (v < 1e-6) {
s = tr("%1n").arg(v*1e9, 0, 'f', decimalPlaces);
} else if (v < 1e-3) {
s = tr("%1µ").arg(v*1e6, 0, 'f', decimalPlaces);
} else if (v < 1.0) {
s = tr("%1m").arg(v*1e3, 0, 'f', decimalPlaces);
} else if (v < 1e3) {
s = tr("%1").arg(v, 0, 'f', decimalPlaces);
} else if (v < 1e6) {
s = tr("%1k").arg(v*1e-3, 0, 'f', decimalPlaces);
} else if (v < 1e9) {
s = tr("%1M").arg(v*1e-6, 0, 'f', decimalPlaces);
} else {
s = tr("%1G").arg(v*1e-9, 0, 'f', decimalPlaces);
}
}
void GLSpectrumGUI::setAveragingToolitp()
{
if (m_glSpectrum)
{
QString s;
float averagingTime = (m_fftSize * (m_averagingNb == 0 ? 1 : m_averagingNb)) / (float) m_glSpectrum->getSampleRate();
setNumberStr(averagingTime, 2, s);
ui->averaging->setToolTip(QString("Number of averaging samples (avg time: %1s)").arg(s));
}
else
{
ui->averaging->setToolTip(QString("Number of averaging samples"));
}
}
bool GLSpectrumGUI::handleMessage(const Message& message)
{
if (GLSpectrum::MsgReportSampleRate::match(message))
{
setAveragingToolitp();
return true;
}
return false;
}
void GLSpectrumGUI::handleInputMessages()
{
Message* message;
while ((message = m_messageQueue.pop()) != 0)
{
qDebug("GLSpectrumGUI::handleInputMessages: message: %s", message->getIdentifier());
if (handleMessage(*message))
{
delete message;
}
}
}