1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-10-31 23:17:11 -04:00
sdrangel/plugins/samplemimo/bladerf2mimo/bladerf2mothread.cpp
2020-11-10 19:09:44 +01:00

239 lines
8.1 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include "bladerf2/devicebladerf2shared.h"
#include "dsp/samplemofifo.h"
#include "bladerf2mothread.h"
BladeRF2MOThread::BladeRF2MOThread(struct bladerf* dev, QObject* parent) :
QThread(parent),
m_running(false),
m_dev(dev),
m_log2Interp(0)
{
qDebug("BladeRF2MOThread::BladeRF2MOThread");
m_buf = new qint16[2*DeviceBladeRF2::blockSize*2];
}
BladeRF2MOThread::~BladeRF2MOThread()
{
qDebug("BladeRF2MOThread::~BladeRF2MOThread");
if (m_running) {
stopWork();
}
delete[] m_buf;
}
void BladeRF2MOThread::startWork()
{
m_startWaitMutex.lock();
start();
while(!m_running) {
m_startWaiter.wait(&m_startWaitMutex, 100);
}
m_startWaitMutex.unlock();
}
void BladeRF2MOThread::stopWork()
{
m_running = false;
wait();
}
void BladeRF2MOThread::run()
{
int res;
m_running = true;
m_startWaiter.wakeAll();
int status;
status = bladerf_sync_config(m_dev, BLADERF_TX_X2, BLADERF_FORMAT_SC16_Q11, 128, 16384, 32, 1500);
if (status < 0)
{
qCritical("BladeRF2MOThread::run: cannot configure streams: %s", bladerf_strerror(status));
}
else
{
qDebug("BladeRF2MOThread::run: start running loop");
while (m_running)
{
callback(m_buf, DeviceBladeRF2::blockSize);
res = bladerf_sync_tx(m_dev, m_buf, DeviceBladeRF2::blockSize*2, 0, 1500);
if (res < 0)
{
qCritical("BladeRF2MOThread::run sync Rx error: %s", bladerf_strerror(res));
break;
}
}
qDebug("BladeRF2MOThread::run: stop running loop");
}
m_running = false;
}
void BladeRF2MOThread::setLog2Interpolation(unsigned int log2Interp)
{
qDebug("BladeRF2MOThread::setLog2Interpolation: %u", log2Interp);
m_log2Interp = log2Interp;
}
unsigned int BladeRF2MOThread::getLog2Interpolation() const
{
return m_log2Interp;
}
void BladeRF2MOThread::setFcPos(int fcPos)
{
m_fcPos = fcPos;
}
int BladeRF2MOThread::getFcPos() const
{
return m_fcPos;
}
void BladeRF2MOThread::callback(qint16* buf, qint32 samplesPerChannel)
{
unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End;
m_sampleFifo->readSync(samplesPerChannel/(1<<m_log2Interp), iPart1Begin, iPart1End, iPart2Begin, iPart2End);
if (iPart1Begin != iPart1End)
{
callbackPart(buf, (iPart1End - iPart1Begin)*(1<<m_log2Interp), iPart1Begin);
}
if (iPart2Begin != iPart2End)
{
unsigned int shift = (iPart1End - iPart1Begin)*(1<<m_log2Interp);
callbackPart(buf + 2*shift, (iPart2End - iPart2Begin)*(1<<m_log2Interp), iPart2Begin);
}
int status = bladerf_interleave_stream_buffer(BLADERF_TX_X2, BLADERF_FORMAT_SC16_Q11 , samplesPerChannel*2, (void *) buf);
if (status < 0)
{
qCritical("BladeRF2MOThread::callback: cannot interleave buffer: %s", bladerf_strerror(status));
return;
}
}
// Interpolate according to specified log2 (ex: log2=4 => decim=16). len is a number of samples (not a number of I or Q)
void BladeRF2MOThread::callbackPart(qint16* buf, qint32 nSamples, int iBegin)
{
for (unsigned int channel = 0; channel < 2; channel++)
{
SampleVector::iterator begin = m_sampleFifo->getData(channel).begin() + iBegin;
if (m_log2Interp == 0)
{
m_interpolators[channel].interpolate1(&begin, &buf[channel*2*nSamples], 2*nSamples);
}
else
{
if (m_fcPos == 0) // Infra
{
switch (m_log2Interp)
{
case 1:
m_interpolators[channel].interpolate2_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 2:
m_interpolators[channel].interpolate4_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 3:
m_interpolators[channel].interpolate8_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 4:
m_interpolators[channel].interpolate16_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 5:
m_interpolators[channel].interpolate32_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 6:
m_interpolators[channel].interpolate64_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
default:
break;
}
}
else if (m_fcPos == 1) // Supra
{
switch (m_log2Interp)
{
case 1:
m_interpolators[channel].interpolate2_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 2:
m_interpolators[channel].interpolate4_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 3:
m_interpolators[channel].interpolate8_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 4:
m_interpolators[channel].interpolate16_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 5:
m_interpolators[channel].interpolate32_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 6:
m_interpolators[channel].interpolate64_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
default:
break;
}
}
else if (m_fcPos == 2) // Center
{
switch (m_log2Interp)
{
case 1:
m_interpolators[channel].interpolate2_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 2:
m_interpolators[channel].interpolate4_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 3:
m_interpolators[channel].interpolate8_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 4:
m_interpolators[channel].interpolate16_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 5:
m_interpolators[channel].interpolate32_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 6:
m_interpolators[channel].interpolate64_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
default:
break;
}
}
}
}
}