1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-10-31 23:17:11 -04:00
sdrangel/plugins/samplesink/testsink/testsinkworker.cpp
2020-11-04 21:51:55 +01:00

228 lines
6.5 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <errno.h>
#include <algorithm>
#include <QDebug>
#include "dsp/samplesourcefifo.h"
#include "dsp/basebandsamplesink.h"
#include "testsinkworker.h"
TestSinkWorker::TestSinkWorker(SampleSourceFifo* sampleFifo, QObject* parent) :
QObject(parent),
m_running(false),
m_bufsize(0),
m_samplesChunkSize(0),
m_sampleFifo(sampleFifo),
m_samplesCount(0),
m_samplerate(0),
m_log2Interpolation(0),
m_throttlems(TESTSINK_THROTTLE_MS),
m_maxThrottlems(50),
m_throttleToggle(false),
m_buf(0)
{
}
TestSinkWorker::~TestSinkWorker()
{
if (m_running) {
stopWork();
}
if (m_buf) delete[] m_buf;
}
void TestSinkWorker::startWork()
{
qDebug() << "TestSinkWorker::startWork: ";
m_maxThrottlems = 0;
m_elapsedTimer.start();
m_running = true;
}
void TestSinkWorker::stopWork()
{
qDebug() << "TestSinkWorker::stopWork";
m_running = false;
}
void TestSinkWorker::setSamplerate(int samplerate)
{
if (samplerate != m_samplerate)
{
qDebug() << "TestSinkWorker::setSamplerate:"
<< " new:" << samplerate
<< " old:" << m_samplerate;
bool wasRunning = false;
if (m_running)
{
stopWork();
wasRunning = true;
}
// resize sample FIFO
if (m_sampleFifo) {
m_sampleFifo->resize(SampleSourceFifo::getSizePolicy(samplerate));
}
// resize output buffer
if (m_buf) delete[] m_buf;
m_buf = new int16_t[samplerate*(1<<m_log2Interpolation)*2];
m_samplerate = samplerate;
m_samplesChunkSize = (m_samplerate * m_throttlems) / 1000;
if (wasRunning) {
startWork();
}
}
}
void TestSinkWorker::setLog2Interpolation(int log2Interpolation)
{
if ((log2Interpolation < 0) || (log2Interpolation > 6)) {
return;
}
if (log2Interpolation != m_log2Interpolation)
{
qDebug() << "TestSinkWorker::setLog2Interpolation:"
<< " new:" << log2Interpolation
<< " old:" << m_log2Interpolation;
bool wasRunning = false;
if (m_running)
{
stopWork();
wasRunning = true;
}
// resize output buffer
if (m_buf) delete[] m_buf;
m_buf = new int16_t[m_samplerate*(1<<log2Interpolation)*2];
m_log2Interpolation = log2Interpolation;
if (wasRunning) {
startWork();
}
}
}
void TestSinkWorker::connectTimer(const QTimer& timer)
{
qDebug() << "TestSinkWorker::connectTimer";
connect(&timer, SIGNAL(timeout()), this, SLOT(tick()));
}
void TestSinkWorker::tick()
{
if (m_running)
{
qint64 throttlems = m_elapsedTimer.restart();
if (throttlems != m_throttlems)
{
m_throttlems = throttlems;
m_samplesChunkSize = (m_samplerate * (m_throttlems+(m_throttleToggle ? 1 : 0))) / 1000;
m_throttleToggle = !m_throttleToggle;
}
unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End;
SampleVector& data = m_sampleFifo->getData();
m_sampleFifo->read(m_samplesChunkSize, iPart1Begin, iPart1End, iPart2Begin, iPart2End);
m_samplesCount += m_samplesChunkSize;
if (iPart1Begin != iPart1End) {
callbackPart(data, iPart1Begin, iPart1End);
}
if (iPart2Begin != iPart2End) {
callbackPart(data, iPart2Begin, iPart2End);
}
}
}
void TestSinkWorker::callbackPart(SampleVector& data, unsigned int iBegin, unsigned int iEnd)
{
SampleVector::iterator beginRead = data.begin() + iBegin;
unsigned int chunkSize = iEnd - iBegin;
if (m_log2Interpolation == 0)
{
m_interpolators.interpolate1(&beginRead, m_buf, 2*chunkSize);
feedSpectrum(m_buf, 2*chunkSize);
}
else
{
switch (m_log2Interpolation)
{
case 1:
m_interpolators.interpolate2_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interpolation)*2);
break;
case 2:
m_interpolators.interpolate4_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interpolation)*2);
break;
case 3:
m_interpolators.interpolate8_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interpolation)*2);
break;
case 4:
m_interpolators.interpolate16_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interpolation)*2);
break;
case 5:
m_interpolators.interpolate32_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interpolation)*2);
break;
case 6:
m_interpolators.interpolate64_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interpolation)*2);
break;
default:
break;
}
feedSpectrum(m_buf, 2*chunkSize*(1<<m_log2Interpolation));
}
}
void TestSinkWorker::feedSpectrum(int16_t *buf, unsigned int bufSize)
{
if (!m_spectrumSink) {
return;
}
m_samplesVector.allocate(bufSize/2);
Sample16 *s16Buf = (Sample16*) buf;
std::transform(
s16Buf,
s16Buf + (bufSize/2),
m_samplesVector.m_vector.begin(),
[](Sample16 s) -> Sample {
return Sample{s.m_real, s.m_imag};
}
);
m_spectrumSink->feed(m_samplesVector.m_vector.begin(), m_samplesVector.m_vector.begin() + (bufSize/2), false);
}