1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-08 17:46:03 -05:00
sdrangel/sdrbase/util/azel.cpp
2020-11-14 18:45:05 +01:00

151 lines
5.8 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2020 Jon Beniston, M7RCE //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include "azel.h"
#include <cmath>
// Calculate cartesian distance between two points
double AzEl::cartDistance(const AzElPoint& a, const AzElPoint& b)
{
double dx = b.m_cart.m_x - a.m_cart.m_x;
double dy = b.m_cart.m_y - a.m_cart.m_y;
double dz = b.m_cart.m_z - a.m_cart.m_z;
return std::sqrt(dx*dx + dy*dy + dz*dz);
}
// Calculate vector difference then normalise the result
bool AzEl::normVectorDiff(const AzElCartesian& a, const AzElCartesian& b, AzElCartesian& n)
{
n.m_x = b.m_x - a.m_x;
n.m_y = b.m_y - a.m_y;
n.m_z = b.m_z - a.m_z;
double distance = std::sqrt(n.m_x*n.m_x + n.m_y*n.m_y + n.m_z*n.m_z);
if (distance > 0.0f)
{
n.m_x = n.m_x / distance;
n.m_y = n.m_y / distance;
n.m_z = n.m_z / distance;
return true;
}
else
{
return false;
}
}
// Convert geodetic latitude (as given by GPS) to geocentric latitude (angle from centre of Earth between the point and equator)
// Both in radians.
// https://en.wikipedia.org/wiki/Latitude#Geocentric_latitude
double AzEl::geocentricLatitude(double latRad) const
{
double e2 = 0.00669437999014;
return std::atan((1.0 - e2) * std::tan(latRad));
}
// Earth radius for a given latitude, as it's not quite spherical
// http://en.wikipedia.org/wiki/Earth_radius
double AzEl::earthRadiusInMetres(double geodeticLatRad) const
{
double equatorialRadius = 6378137.0;
double polarRadius = 6356752.3;
double cosLat = std::cos(geodeticLatRad);
double sinLat = std::sin(geodeticLatRad);
double t1 = equatorialRadius * equatorialRadius * cosLat;
double t2 = polarRadius * polarRadius * sinLat;
double t3 = equatorialRadius * cosLat;
double t4 = polarRadius * sinLat;
return std::sqrt((t1*t1 + t2*t2)/(t3*t3 + t4*t4));
}
// Convert spherical coordinate to cartesian. Also calculates radius and a normal vector
void AzEl::sphericalToCartesian(AzElPoint& point)
{
// First calculate cartesian coords for point on Earth's surface
double latRad = point.m_spherical.m_latitude * M_PI/180.0;
double longRad = point.m_spherical.m_longitude * M_PI/180.0;
point.m_radius = earthRadiusInMetres(latRad);
double clat = geocentricLatitude(latRad);
double cosLong = cos(longRad);
double sinLong = sin(longRad);
double cosLat = cos(clat);
double sinLat = sin(clat);
point.m_cart.m_x = point.m_radius * cosLong * cosLat;
point.m_cart.m_y = point.m_radius * sinLong * cosLat;
point.m_cart.m_z = point.m_radius * sinLat;
// Calculate normal vector at surface
double cosGLat = std::cos(latRad);
double sinGLat = std::sin(latRad);
point.m_norm.m_x = cosGLat * cosLong;
point.m_norm.m_y = cosGLat * sinLong;
point.m_norm.m_z = sinGLat;
// Add altitude along normal vector
point.m_cart.m_x += point.m_spherical.m_altitude * point.m_norm.m_x;
point.m_cart.m_y += point.m_spherical.m_altitude * point.m_norm.m_y;
point.m_cart.m_z += point.m_spherical.m_altitude * point.m_norm.m_z;
}
// Calculate azimuth of target from location
void AzEl::calcAzimuth()
{
AzElPoint bRot;
// Rotate so location is at lat=0, long=0
bRot.m_spherical.m_latitude = m_target.m_spherical.m_latitude;
bRot.m_spherical.m_longitude = m_target.m_spherical.m_longitude - m_location.m_spherical.m_longitude;
bRot.m_spherical.m_altitude = m_target.m_spherical.m_altitude;
sphericalToCartesian(bRot);
double aLat = geocentricLatitude(-m_location.m_spherical.m_latitude * M_PI / 180.0);
double aCos = std::cos(aLat);
double aSin = std::sin(aLat);
//double bx = (bRot.m_cart.m_x * aCos) - (bRot.m_cart.m_z * aSin);
double by = bRot.m_cart.m_y;
double bz = (bRot.m_cart.m_x * aSin) + (bRot.m_cart.m_z * aCos);
if (bz*bz + by*by > 1e-6)
{
double theta = std::atan2(bz, by) * 180.0 / M_PI;
m_azimuth = 90.0 - theta;
if (m_azimuth < 0.0)
m_azimuth += 360.0;
else if (m_azimuth > 360.0)
m_azimuth -= 360.0;
}
else
m_azimuth = 0.0;
}
// Calculate elevation of target from location
void AzEl::calcElevation()
{
AzElCartesian bma;
if (normVectorDiff(m_location.m_cart, m_target.m_cart, bma))
{
m_elevation = 90.0 - (180.0/M_PI) * std::acos(bma.m_x * m_location.m_norm.m_x
+ bma.m_y * m_location.m_norm.m_y
+ bma.m_z * m_location.m_norm.m_z);
}
else
m_elevation = 0.0;
}