1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-05 00:11:16 -05:00
sdrangel/plugins/channelrx/demodatv/atvdemod.cpp

838 lines
26 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017 F4HKW //
// for F4EXB / SDRAngel //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include "atvdemod.h"
#include <QTime>
#include <QDebug>
#include <stdio.h>
#include <complex.h>
#include "audio/audiooutput.h"
#include "dsp/dspengine.h"
#include "dsp/pidcontroller.h"
MESSAGE_CLASS_DEFINITION(ATVDemod::MsgConfigureATVDemod, Message)
MESSAGE_CLASS_DEFINITION(ATVDemod::MsgConfigureRFATVDemod, Message)
MESSAGE_CLASS_DEFINITION(ATVDemod::MsgReportEffectiveSampleRate, Message)
const int ATVDemod::m_ssbFftLen = 1024;
ATVDemod::ATVDemod(BasebandSampleSink* objScopeSink) :
m_objScopeSink(objScopeSink),
m_objSettingsMutex(QMutex::Recursive),
m_objRegisteredATVScreen(NULL),
m_intImageIndex(0),
m_intColIndex(0),
m_intRowIndex(0),
m_intLineIndex(0),
m_intSynchroPoints(0),
m_blnSynchroDetected(false),
m_blnVerticalSynchroDetected(false),
m_fltEffMin(2000000000.0f),
m_fltEffMax(-2000000000.0f),
m_fltAmpMin(-2000000000.0f),
m_fltAmpMax(2000000000.0f),
m_fltAmpDelta(1.0),
m_fltAmpLineAverage(0.0f),
m_intNumberSamplePerTop(0),
m_bfoPLL(200/1000000, 100/1000000, 0.01),
m_bfoFilter(200.0, 1000000.0, 0.9),
m_interpolatorDistanceRemain(0.0f),
m_interpolatorDistance(1.0f),
m_DSBFilter(0),
m_DSBFilterBuffer(0),
m_DSBFilterBufferIndex(0),
m_objAvgColIndex(2)
{
setObjectName("ATVDemod");
//*************** ATV PARAMETERS ***************
m_intNumberSamplePerLine=0;
m_intSynchroPoints=0;
m_intNumberOfLines=0;
m_objMagSqAverage.resize(32, 1.0);
m_DSBFilter = new fftfilt((2.0f * m_objRFConfig.m_fltRFBandwidth) / 1000000, 2 * m_ssbFftLen); // arbitrary 1 MS/s sample rate
m_DSBFilterBuffer = new Complex[m_ssbFftLen];
memset(m_DSBFilterBuffer, 0, sizeof(Complex)*(m_ssbFftLen));
memset((void*)m_fltBufferI,0,6*sizeof(float));
memset((void*)m_fltBufferQ,0,6*sizeof(float));
m_objPhaseDiscri.setFMScaling(1.0f);
applyStandard();
}
ATVDemod::~ATVDemod()
{
}
void ATVDemod::setATVScreen(ATVScreen *objScreen)
{
m_objRegisteredATVScreen = objScreen;
}
void ATVDemod::configure(
MessageQueue* objMessageQueue,
float fltLineDurationUs,
float fltTopDurationUs,
float fltFramePerS,
ATVStd enmATVStandard,
float fltRatioOfRowsToDisplay,
float fltVoltLevelSynchroTop,
float fltVoltLevelSynchroBlack,
bool blnHSync,
bool blnVSync,
bool blnInvertVideo,
int intVideoTabIndex)
{
Message* msgCmd = MsgConfigureATVDemod::create(
fltLineDurationUs,
fltTopDurationUs,
fltFramePerS,
enmATVStandard,
fltRatioOfRowsToDisplay,
fltVoltLevelSynchroTop,
fltVoltLevelSynchroBlack,
blnHSync,
blnVSync,
blnInvertVideo,
intVideoTabIndex);
objMessageQueue->push(msgCmd);
}
void ATVDemod::configureRF(
MessageQueue* objMessageQueue,
ATVModulation enmModulation,
float fltRFBandwidth,
float fltRFOppBandwidth,
bool blnFFTFiltering,
bool blnDecimatorEnable,
float fltBFOFrequency,
float fmDeviation)
{
Message* msgCmd = MsgConfigureRFATVDemod::create(
enmModulation,
fltRFBandwidth,
fltRFOppBandwidth,
blnFFTFiltering,
blnDecimatorEnable,
fltBFOFrequency,
fmDeviation);
objMessageQueue->push(msgCmd);
}
void ATVDemod::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool firstOfBurst)
{
float fltDivSynchroBlack = 1.0f - m_objRunning.m_fltVoltLevelSynchroBlack;
float fltI;
float fltQ;
float fltNormI;
float fltNormQ;
Complex ci;
float fltNorm=0.00f;
float fltVal;
int intVal;
qint16 * ptrBufferToRelease = 0;
bool blnComputeImage=false;
int intSynchroTimeSamples= (3*m_intNumberSamplePerLine)/4;
float fltSynchroTrameLevel = 0.5f*((float)intSynchroTimeSamples) * m_objRunning.m_fltVoltLevelSynchroBlack;
//********** Let's rock and roll buddy ! **********
m_objSettingsMutex.lock();
//********** Accessing ATV Screen context **********
#ifdef EXTENDED_DIRECT_SAMPLE
qint16 * ptrBuffer;
qint32 intLen;
//********** Reading direct samples **********
SampleVector::const_iterator it = begin;
intLen = it->intLen;
ptrBuffer = it->ptrBuffer;
ptrBufferToRelease = ptrBuffer;
++it;
for(qint32 intInd=0; intInd<intLen-1; intInd +=2)
{
fltI= ((qint32) (*ptrBuffer)) << 4;
ptrBuffer ++;
fltQ= ((qint32) (*ptrBuffer)) << 4;
ptrBuffer ++;
#else
for (SampleVector::const_iterator it = begin; it != end; ++it /* ++it **/)
{
fltI = it->real();
fltQ = it->imag();
#endif
Complex c(fltI, fltQ);
if (m_objRFRunning.m_intFrequencyOffset != 0)
{
c *= m_nco.nextIQ();
}
if (m_objRFRunning.m_blndecimatorEnable)
{
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
{
demod(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
else
{
demod(c);
}
}
if ((m_objRunning.m_intVideoTabIndex == 1) && (m_objScopeSink != 0)) // do only if scope tab is selected and scope is available
{
m_objScopeSink->feed(m_objScopeSampleBuffer.begin(), m_objScopeSampleBuffer.end(), false); // m_ssb = positive only
}
m_objScopeSampleBuffer.clear();
if (ptrBufferToRelease != 0)
{
delete ptrBufferToRelease;
}
m_objSettingsMutex.unlock();
}
void ATVDemod::demod(Complex& c)
{
float fltDivSynchroBlack = 1.0f - m_objRunning.m_fltVoltLevelSynchroBlack;
int intSynchroTimeSamples= (3*m_intNumberSamplePerLine)/4;
float fltSynchroTrameLevel = 0.5f*((float)intSynchroTimeSamples) * m_objRunning.m_fltVoltLevelSynchroBlack;
float fltNormI;
float fltNormQ;
float fltNorm;
float fltVal;
int intVal;
//********** FFT filtering **********
if (m_objRFRunning.m_blnFFTFiltering)
{
int n_out;
fftfilt::cmplx *filtered;
n_out = m_DSBFilter->runAsym(c, &filtered, m_objRFRunning.m_enmModulation != ATV_LSB); // all usb except explicitely lsb
if (n_out > 0)
{
memcpy((void *) m_DSBFilterBuffer, (const void *) filtered, n_out*sizeof(Complex));
m_DSBFilterBufferIndex = 0;
}
m_DSBFilterBufferIndex++;
}
//********** demodulation **********
#if defined(_WINDOWS_)
float fltI = m_objRFRunning.m_blnFFTFiltering ? m_DSBFilterBuffer[m_DSBFilterBufferIndex-1].real() : c.real();
float fltQ = m_objRFRunning.m_blnFFTFiltering ? m_DSBFilterBuffer[m_DSBFilterBufferIndex-1].imag() : c.imag();
#else
float& fltI = m_objRFRunning.m_blnFFTFiltering ? m_DSBFilterBuffer[m_DSBFilterBufferIndex-1].real() : c.real();
float& fltQ = m_objRFRunning.m_blnFFTFiltering ? m_DSBFilterBuffer[m_DSBFilterBufferIndex-1].imag() : c.imag();
#endif
double magSq;
if ((m_objRFRunning.m_enmModulation == ATV_FM1) || (m_objRFRunning.m_enmModulation == ATV_FM2))
{
//Amplitude FM
magSq = fltI*fltI + fltQ*fltQ;
m_objMagSqAverage.feed(magSq);
fltNorm = sqrt(magSq);
fltNormI= fltI/fltNorm;
fltNormQ= fltQ/fltNorm;
//-2 > 2 : 0 -> 1 volt
//0->0.3 synchro 0.3->1 image
if (m_objRFRunning.m_enmModulation == ATV_FM1)
{
//YDiff Cd
fltVal = m_fltBufferI[0]*(fltNormQ - m_fltBufferQ[1]);
fltVal -= m_fltBufferQ[0]*(fltNormI - m_fltBufferI[1]);
fltVal += 2.0f;
fltVal /= 4.0f;
}
else
{
//YDiff Folded
fltVal = m_fltBufferI[2]*((m_fltBufferQ[5]-fltNormQ)/16.0f + m_fltBufferQ[1] - m_fltBufferQ[3]);
fltVal -= m_fltBufferQ[2]*((m_fltBufferI[5]-fltNormI)/16.0f + m_fltBufferI[1] - m_fltBufferI[3]);
fltVal += 2.125f;
fltVal /= 4.25f;
m_fltBufferI[5]=m_fltBufferI[4];
m_fltBufferQ[5]=m_fltBufferQ[4];
m_fltBufferI[4]=m_fltBufferI[3];
m_fltBufferQ[4]=m_fltBufferQ[3];
m_fltBufferI[3]=m_fltBufferI[2];
m_fltBufferQ[3]=m_fltBufferQ[2];
m_fltBufferI[2]=m_fltBufferI[1];
m_fltBufferQ[2]=m_fltBufferQ[1];
}
m_fltBufferI[1]=m_fltBufferI[0];
m_fltBufferQ[1]=m_fltBufferQ[0];
m_fltBufferI[0]=fltNormI;
m_fltBufferQ[0]=fltNormQ;
if (m_objRFRunning.m_fmDeviation != 1.0f)
{
fltVal = ((fltVal - 0.5f) / m_objRFRunning.m_fmDeviation) + 0.5f;
}
}
else if (m_objRFRunning.m_enmModulation == ATV_AM)
{
//Amplitude AM
magSq = fltI*fltI + fltQ*fltQ;
m_objMagSqAverage.feed(magSq);
fltNorm = sqrt(magSq);
fltVal = fltNorm;
//********** Mini and Maxi Amplitude tracking **********
if(fltVal<m_fltEffMin)
{
m_fltEffMin=fltVal;
}
if(fltVal>m_fltEffMax)
{
m_fltEffMax=fltVal;
}
//Normalisation
fltVal -= m_fltAmpMin;
fltVal /=m_fltAmpDelta;
}
else if ((m_objRFRunning.m_enmModulation == ATV_USB) || (m_objRFRunning.m_enmModulation == ATV_LSB))
{
magSq = fltI*fltI + fltQ*fltQ;
m_objMagSqAverage.feed(magSq);
fltNorm = sqrt(magSq);
Real bfoValues[2];
float fltFiltered = m_bfoFilter.run(fltI);
m_bfoPLL.process(fltFiltered, bfoValues);
// do the mix
float mixI = fltI * bfoValues[0] - fltQ * bfoValues[1];
float mixQ = fltI * bfoValues[1] + fltQ * bfoValues[0];
if (m_objRFRunning.m_enmModulation == ATV_USB) {
fltVal = (mixI + mixQ);
} else {
fltVal = (mixI - mixQ);
}
//********** Mini and Maxi Amplitude tracking **********
if(fltVal<m_fltEffMin)
{
m_fltEffMin=fltVal;
}
if(fltVal>m_fltEffMax)
{
m_fltEffMax=fltVal;
}
//Normalisation
fltVal -= m_fltAmpMin;
fltVal /=m_fltAmpDelta;
}
else if (m_objRFRunning.m_enmModulation == ATV_FM3)
{
float rawDeviation;
fltVal = m_objPhaseDiscri.phaseDiscriminatorDelta(c, magSq, rawDeviation) + 0.5f;
//fltVal = fltVal < 0.0f ? 0.0f : fltVal > 1.0f ? 1.0f : fltVal;
m_objMagSqAverage.feed(magSq);
fltNorm = sqrt(magSq);
}
else
{
magSq = fltI*fltI + fltQ*fltQ;
m_objMagSqAverage.feed(magSq);
fltNorm = sqrt(magSq);
fltVal = 0.0f;
}
m_objScopeSampleBuffer.push_back(Sample(fltVal*32767.0f, 0.0f));
fltVal = m_objRunning.m_blnInvertVideo ? 1.0f - fltVal : fltVal;
m_fltAmpLineAverage += fltVal;
//********** gray level **********
//-0.3 -> 0.7
intVal = (int) 255.0*(fltVal - m_objRunning.m_fltVoltLevelSynchroBlack) / fltDivSynchroBlack;
//0 -> 255
if(intVal<0)
{
intVal=0;
}
else if(intVal>255)
{
intVal=255;
}
//////////////////////
// Horizontal Synchro detection
// Floor Detection 0
if (fltVal < m_objRunning.m_fltVoltLevelSynchroTop)
{
m_intSynchroPoints++;
}
// Black detection 0.3
else if (fltVal > m_objRunning.m_fltVoltLevelSynchroBlack)
{
m_intSynchroPoints = 0;
}
m_blnSynchroDetected = (m_intSynchroPoints == m_intNumberSamplePerTop);
//Horizontal Synchro processing
bool blnNewLine = false;
if (!m_objRunning.m_blnHSync && (m_intColIndex >= m_intNumberSamplePerLine)) // H Sync not active
{
m_intColIndex = 0;
blnNewLine = true;
}
else if (m_blnSynchroDetected // Valid H sync detected
&& (m_intColIndex > m_intNumberSamplePerLine - m_intNumberSamplePerTop)
&& (m_intColIndex < m_intNumberSamplePerLine + m_intNumberSamplePerTop))
{
m_intAvgColIndex = m_objAvgColIndex.run(m_intColIndex);
m_intColIndex = m_intColIndex - m_intAvgColIndex;
blnNewLine = true;
}
else if (m_intColIndex >= m_intNumberSamplePerLine + 2) // No valid H sync
{
m_intColIndex = 0;
blnNewLine = true;
}
if (blnNewLine)
{
m_fltAmpLineAverage=0.0f;
//New line + Interleaving
m_intRowIndex += 2;
if (m_intRowIndex < m_intNumberOfLines)
{
m_objRegisteredATVScreen->selectRow(m_intRowIndex - m_intNumberOfSyncLines);
}
m_intLineIndex++;
}
// Filling pixels
m_objRegisteredATVScreen->setDataColor(m_intColIndex - m_intNumberSaplesPerHSync + m_intNumberSamplePerTop, intVal, intVal, intVal);
m_intColIndex++;
// Vertical sync and image rendering
if (m_objRunning.m_blnVSync) // VSync activated
{
if (m_intColIndex >= intSynchroTimeSamples)
{
if (m_fltAmpLineAverage <= fltSynchroTrameLevel)
{
m_fltAmpLineAverage = 0.0f;
if (!m_blnVerticalSynchroDetected) // not yet
{
m_blnVerticalSynchroDetected = true; // prevent repetition
if (m_intLineIndex % 2 == 0) // even => odd image
{
m_objRegisteredATVScreen->renderImage(0);
if (m_objRFRunning.m_enmModulation == ATV_AM)
{
m_fltAmpMin = m_fltEffMin;
m_fltAmpMax = m_fltEffMax;
m_fltAmpDelta = m_fltEffMax-m_fltEffMin;
if(m_fltAmpDelta<=0.0)
{
m_fltAmpDelta=1.0f;
}
//Reset extrema
m_fltEffMin = 2000000.0f;
m_fltEffMax = -2000000.0f;
}
m_intRowIndex = 1;
}
else
{
m_intRowIndex = 0;
}
m_objRegisteredATVScreen->selectRow(m_intRowIndex - m_intNumberOfSyncLines);
m_intLineIndex = 0;
m_intImageIndex++;
}
}
else
{
m_blnVerticalSynchroDetected = false; // reset
}
}
}
else // no VSync => arbitrary
{
if (m_intLineIndex >= m_intNumberOfLines/2)
{
if (m_intImageIndex % 2 == 1) // odd image
{
m_objRegisteredATVScreen->renderImage(0);
if (m_objRFRunning.m_enmModulation == ATV_AM)
{
m_fltAmpMin = m_fltEffMin;
m_fltAmpMax = m_fltEffMax;
m_fltAmpDelta = m_fltEffMax-m_fltEffMin;
if(m_fltAmpDelta<=0.0)
{
m_fltAmpDelta=1.0f;
}
//Reset extrema
m_fltEffMin = 2000000.0f;
m_fltEffMax = -2000000.0f;
}
m_intRowIndex = 1;
}
else
{
m_intRowIndex = 0;
}
m_objRegisteredATVScreen->selectRow(m_intRowIndex - m_intNumberOfSyncLines);
m_intLineIndex = 0;
m_intImageIndex++;
}
}
}
void ATVDemod::start()
{
//m_objTimer.start();
}
void ATVDemod::stop()
{
}
bool ATVDemod::handleMessage(const Message& cmd)
{
qDebug() << "ATVDemod::handleMessage";
if (DownChannelizer::MsgChannelizerNotification::match(cmd))
{
DownChannelizer::MsgChannelizerNotification& objNotif = (DownChannelizer::MsgChannelizerNotification&) cmd;
m_objConfig.m_intSampleRate = objNotif.getSampleRate();
m_objRFConfig.m_intFrequencyOffset = objNotif.getFrequencyOffset();
qDebug() << "ATVDemod::handleMessage: MsgChannelizerNotification:"
<< " m_intSampleRate: " << m_objConfig.m_intSampleRate
<< " m_intFrequencyOffset: " << m_objRFConfig.m_intFrequencyOffset;
applySettings();
return true;
}
else if (MsgConfigureATVDemod::match(cmd))
{
MsgConfigureATVDemod& objCfg = (MsgConfigureATVDemod&) cmd;
m_objConfig = objCfg.m_objMsgConfig;
qDebug() << "ATVDemod::handleMessage: MsgConfigureATVDemod:"
<< " m_fltVoltLevelSynchroBlack:" << m_objConfig.m_fltVoltLevelSynchroBlack
<< " m_fltVoltLevelSynchroTop:" << m_objConfig.m_fltVoltLevelSynchroTop
<< " m_fltFramePerS:" << m_objConfig.m_fltFramePerS
<< " m_fltLineDurationUs:" << m_objConfig.m_fltLineDuration
<< " m_fltRatioOfRowsToDisplay:" << m_objConfig.m_fltRatioOfRowsToDisplay
<< " m_fltTopDurationUs:" << m_objConfig.m_fltTopDuration
<< " m_blnHSync:" << m_objConfig.m_blnHSync
<< " m_blnVSync:" << m_objConfig.m_blnVSync;
applySettings();
return true;
}
else if (MsgConfigureRFATVDemod::match(cmd))
{
MsgConfigureRFATVDemod& objCfg = (MsgConfigureRFATVDemod&) cmd;
m_objRFConfig = objCfg.m_objMsgConfig;
qDebug() << "ATVDemod::handleMessage: MsgConfigureRFATVDemod:"
<< " m_enmModulation:" << m_objRFConfig.m_enmModulation
<< " m_fltRFBandwidth:" << m_objRFConfig.m_fltRFBandwidth
<< " m_fltRFOppBandwidth:" << m_objRFConfig.m_fltRFOppBandwidth
<< " m_blnFFTFiltering:" << m_objRFConfig.m_blnFFTFiltering
<< " m_blnDecimatorEnable:" << m_objRFConfig.m_blndecimatorEnable
<< " m_fltBFOFrequency:" << m_objRFConfig.m_fltBFOFrequency
<< " m_fmDeviation:" << m_objRFConfig.m_fmDeviation;
applySettings();
return true;
}
else
{
if (m_objScopeSink != 0)
{
return m_objScopeSink->handleMessage(cmd);
}
else
{
return false;
}
}
}
void ATVDemod::applySettings()
{
if (m_objConfig.m_intSampleRate == 0)
{
return;
}
if((m_objRFConfig.m_intFrequencyOffset != m_objRFRunning.m_intFrequencyOffset)
|| (m_objRFConfig.m_enmModulation != m_objRFRunning.m_enmModulation)
|| (m_objConfig.m_intSampleRate != m_objRunning.m_intSampleRate))
{
m_nco.setFreq(-m_objRFConfig.m_intFrequencyOffset, m_objConfig.m_intSampleRate);
}
if ((m_objConfig.m_intSampleRate != m_objRunning.m_intSampleRate)
|| (m_objRFConfig.m_fltRFBandwidth != m_objRFRunning.m_fltRFBandwidth))
{
m_objSettingsMutex.lock();
m_objConfigPrivate.m_intTVSampleRate = (m_objConfig.m_intSampleRate / 500000) * 500000; // make sure working sample rate is a multiple of rate units
if (m_objConfigPrivate.m_intTVSampleRate > 0)
{
m_interpolatorDistance = (Real) m_objConfigPrivate.m_intTVSampleRate / (Real) m_objConfig.m_intSampleRate;
}
else
{
m_objConfigPrivate.m_intTVSampleRate = m_objConfig.m_intSampleRate;
m_interpolatorDistance = 1.0f;
}
m_interpolatorDistanceRemain = 0;
m_interpolator.create(24,
m_objConfigPrivate.m_intTVSampleRate,
m_objRFConfig.m_fltRFBandwidth / getRFBandwidthDivisor(m_objRFConfig.m_enmModulation),
3.0);
m_objSettingsMutex.unlock();
}
if((m_objConfig.m_fltFramePerS != m_objRunning.m_fltFramePerS)
|| (m_objConfig.m_fltLineDuration != m_objRunning.m_fltLineDuration)
|| (m_objConfig.m_intSampleRate != m_objRunning.m_intSampleRate)
|| (m_objConfig.m_fltTopDuration != m_objRunning.m_fltTopDuration)
|| (m_objConfig.m_fltRatioOfRowsToDisplay != m_objRunning.m_fltRatioOfRowsToDisplay)
|| (m_objConfig.m_enmATVStandard != m_objRunning.m_enmATVStandard))
{
m_objSettingsMutex.lock();
applyStandard();
m_intNumberSamplePerLine = (int) (m_objConfig.m_fltLineDuration * m_objConfig.m_intSampleRate);
m_intNumberSamplePerTop = (int) (m_objConfig.m_fltTopDuration * m_objConfig.m_intSampleRate);
m_objRegisteredATVScreen->resizeATVScreen(
m_intNumberSamplePerLine - m_intNumberSamplePerLineSignals,
m_intNumberOfLines - m_intNumberOfBlackLines);
qDebug() << "ATVDemod::applySettings:"
<< " m_fltLineDuration: " << m_objConfig.m_fltLineDuration
<< " m_fltFramePerS: " << m_objConfig.m_fltFramePerS
<< " m_intNumberOfLines: " << m_intNumberOfLines
<< " m_intNumberSamplePerLine: " << m_intNumberSamplePerLine
<< " m_intNumberOfBlackLines: " << m_intNumberOfBlackLines;
m_intImageIndex = 0;
m_intColIndex=0;
m_intRowIndex=0;
m_objSettingsMutex.unlock();
int sampleRate = m_objRFConfig.m_blndecimatorEnable ? m_objConfigPrivate.m_intTVSampleRate : m_objConfig.m_intSampleRate;
MsgReportEffectiveSampleRate *report;
report = MsgReportEffectiveSampleRate::create(sampleRate, m_intNumberSamplePerLine);
getOutputMessageQueue()->push(report);
}
if ((m_objConfigPrivate.m_intTVSampleRate != m_objRunningPrivate.m_intTVSampleRate)
|| (m_objConfig.m_intSampleRate != m_objRunning.m_intSampleRate)
|| (m_objRFConfig.m_blndecimatorEnable != m_objRFRunning.m_blndecimatorEnable))
{
int sampleRate = m_objRFConfig.m_blndecimatorEnable ? m_objConfigPrivate.m_intTVSampleRate : m_objConfig.m_intSampleRate;
MsgReportEffectiveSampleRate *report;
report = MsgReportEffectiveSampleRate::create(sampleRate, m_intNumberSamplePerLine);
getOutputMessageQueue()->push(report);
}
if ((m_objConfigPrivate.m_intTVSampleRate != m_objRunningPrivate.m_intTVSampleRate)
|| (m_objRFConfig.m_fltRFBandwidth != m_objRFRunning.m_fltRFBandwidth)
|| (m_objRFConfig.m_fltRFOppBandwidth != m_objRFRunning.m_fltRFOppBandwidth))
{
m_objSettingsMutex.lock();
m_DSBFilter->create_asym_filter(m_objRFConfig.m_fltRFOppBandwidth / m_objConfigPrivate.m_intTVSampleRate,
m_objRFConfig.m_fltRFBandwidth / m_objConfigPrivate.m_intTVSampleRate);
memset(m_DSBFilterBuffer, 0, sizeof(Complex)*(m_ssbFftLen));
m_DSBFilterBufferIndex = 0;
m_objSettingsMutex.unlock();
}
if ((m_objConfigPrivate.m_intTVSampleRate != m_objRunningPrivate.m_intTVSampleRate)
|| (m_objRFConfig.m_fltBFOFrequency != m_objRFRunning.m_fltBFOFrequency))
{
m_bfoPLL.configure(m_objRFConfig.m_fltBFOFrequency / m_objConfigPrivate.m_intTVSampleRate,
100.0 / m_objConfigPrivate.m_intTVSampleRate,
0.01);
m_bfoFilter.setFrequencies(m_objRFConfig.m_fltBFOFrequency, m_objConfigPrivate.m_intTVSampleRate);
}
if (m_objRFConfig.m_fmDeviation != m_objRFRunning.m_fmDeviation)
{
m_objPhaseDiscri.setFMScaling(1.0f / m_objRFConfig.m_fmDeviation);
}
m_objRunning = m_objConfig;
m_objRFRunning = m_objRFConfig;
m_objRunningPrivate = m_objConfigPrivate;
}
void ATVDemod::applyStandard()
{
switch(m_objConfig.m_enmATVStandard)
{
case ATVStd405: // Follows loosely the 405 lines standard
m_intNumberOfLines = 405;
// what is left in a 64 us line for the image
m_intNumberOfSyncLines = 24; // (15+7)*2 - 20
m_intNumberOfBlackLines = 28; // above + 4
break;
case ATVStdPAL525: // Follows PAL-M standard
m_intNumberOfLines = 525;
// what is left in a 64/1.008 us line for the image
m_intNumberOfSyncLines = 40; // (15+15)*2 - 20
m_intNumberOfBlackLines = 44; // above + 4
break;
case ATVStdPAL625: // Follows PAL-B/G/H standard
default:
m_intNumberOfLines = 625;
// what is left in a 64 us line for the image
m_intNumberOfSyncLines = 44; // (15+17)*2 - 20
m_intNumberOfBlackLines = 48; // above + 4
}
// for now all standards apply this
m_intNumberSamplePerLineSignals = (int) ((12.0f/64.0f)*m_objConfig.m_fltLineDuration * m_objConfig.m_intSampleRate); // 12.0 = 7.3 + 4.7
m_intNumberSaplesPerHSync = (int) ((9.4f/64.0f)*m_objConfig.m_fltLineDuration * m_objConfig.m_intSampleRate); // 9.4 = 4.7 + 4.7
}
int ATVDemod::getSampleRate()
{
return m_objRunning.m_intSampleRate;
}
int ATVDemod::getEffectiveSampleRate()
{
return m_objRFRunning.m_blndecimatorEnable ? m_objRunningPrivate.m_intTVSampleRate : m_objRunning.m_intSampleRate;
}
bool ATVDemod::getBFOLocked()
{
if ((m_objRFRunning.m_enmModulation == ATV_USB) || (m_objRFRunning.m_enmModulation == ATV_LSB))
{
return m_bfoPLL.locked();
}
else
{
return false;
}
}
float ATVDemod::getRFBandwidthDivisor(ATVModulation modulation)
{
switch(modulation)
{
case ATV_USB:
case ATV_LSB:
return 1.05f;
break;
case ATV_FM1:
case ATV_FM2:
case ATV_AM:
default:
return 2.2f;
}
}