1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-25 01:18:38 -05:00
sdrangel/sdrbase/dsp/phasediscri.h
2024-07-10 23:06:38 +02:00

215 lines
6.5 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany //
// written by Christian Daniel //
// Copyright (C) 2015-2017, 2019 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// Copyright (C) 2020 Kacper Michajłow <kasper93@gmail.com> //
// Copyright (C) 2023 Jon Beniston, M7RCE <jon@beniston.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef INCLUDE_DSP_PHASEDISCRI_H_
#define INCLUDE_DSP_PHASEDISCRI_H_
#include <cmath>
#include "dsp/dsptypes.h"
class PhaseDiscriminators
{
public:
PhaseDiscriminators() :
m_fmScaling(1.0f)
{
reset();
}
/**
* Reset stored values
*/
void reset()
{
m_m1Sample = 0;
m_m2Sample = 0;
m_fltPreviousI = 0.0f;
m_fltPreviousQ = 0.0f;
m_fltPreviousI2 = 0.0f;
m_fltPreviousQ2 = 0.0f;
m_prevArg = 0.0f;
}
/**
* Scaling factor so that resulting excursion maps to [-1,+1]
*/
void setFMScaling(Real fmScaling)
{
m_fmScaling = fmScaling;
}
/**
* Standard discriminator using atan2. On modern processors this is as efficient as the non atan2 one.
* This is better for high fidelity.
*/
Real phaseDiscriminator(const Complex& sample)
{
Complex d(std::conj(m_m1Sample) * sample);
m_m1Sample = sample;
return (std::atan2(d.imag(), d.real()) / M_PI) * m_fmScaling;
}
/**
* Discriminator with phase detection using atan2 and frequency by derivation.
* This yields a precise deviation to sample rate ratio: Sample rate => +/-1.0
*/
Real phaseDiscriminatorDelta(const Complex& sample, double& magsq, Real& fmDev)
{
Real fltI = sample.real();
Real fltQ = sample.imag();
magsq = fltI*fltI + fltQ*fltQ;
Real curArg = atan2_approximation2((float) fltQ, (float) fltI);
fmDev = (curArg - m_prevArg) / M_PI;
m_prevArg = curArg;
if (fmDev < -1.0f) {
fmDev += 2.0f;
} else if (fmDev > 1.0f) {
fmDev -= 2.0f;
}
return fmDev * m_fmScaling;
}
/**
* Alternative without atan at the expense of a slight distortion on very wideband signals
* http://www.embedded.com/design/configurable-systems/4212086/DSP-Tricks--Frequency-demodulation-algorithms-
* in addition it needs scaling by instantaneous magnitude squared and volume (0..10) adjustment factor
*/
Real phaseDiscriminator2(const Complex& sample)
{
Real ip = sample.real() - m_m2Sample.real();
Real qp = sample.imag() - m_m2Sample.imag();
Real h1 = m_m1Sample.real() * qp;
Real h2 = m_m1Sample.imag() * ip;
m_m2Sample = m_m1Sample;
m_m1Sample = sample;
//return ((h1 - h2) / M_PI_2) * m_fmScaling;
return (h1 - h2) * m_fmScaling;
}
/**
* Second alternative
*/
Real phaseDiscriminator3(const Complex& sample, long double& magsq, Real& fltVal)
{
Real fltI = sample.real();
Real fltQ = sample.imag();
double fltNorm;
Real fltNormI;
Real fltNormQ;
//Real fltVal;
magsq = fltI*fltI + fltQ*fltQ;
fltNorm = std::sqrt(magsq);
fltNormI= fltI/fltNorm;
fltNormQ= fltQ/fltNorm;
fltVal = m_fltPreviousI*(fltNormQ - m_fltPreviousQ2);
fltVal -= m_fltPreviousQ*(fltNormI - m_fltPreviousI2);
fltVal += 2.0f;
fltVal /= 4.0f; // normally it is /4
m_fltPreviousQ2 = m_fltPreviousQ;
m_fltPreviousI2 = m_fltPreviousI;
m_fltPreviousQ = fltNormQ;
m_fltPreviousI = fltNormI;
return fltVal * m_fmScaling;
}
private:
Complex m_m1Sample;
Complex m_m2Sample;
Real m_fmScaling;
Real m_fltPreviousI;
Real m_fltPreviousQ;
Real m_fltPreviousI2;
Real m_fltPreviousQ2;
Real m_prevArg;
float atan2_approximation1(float y, float x)
{
//http://pubs.opengroup.org/onlinepubs/009695399/functions/atan2.html
//Volkan SALMA
const float ONEQTR_PI = M_PI / 4.0;
const float THRQTR_PI = 3.0 * M_PI / 4.0;
float r, angle;
float abs_y = std::fabs(y) + 1e-10f; // kludge to prevent 0/0 condition
if ( x < 0.0f )
{
r = (x + abs_y) / (abs_y - x);
angle = THRQTR_PI;
}
else
{
r = (x - abs_y) / (x + abs_y);
angle = ONEQTR_PI;
}
angle += (0.1963f * r * r - 0.9817f) * r;
if ( y < 0.0f )
return( -angle ); // negate if in quad III or IV
else
return( angle );
}
#define PI_FLOAT float(M_PI)
#define PIBY2_FLOAT float(M_PI_2)
// |error| < 0.005
float atan2_approximation2( float y, float x )
{
if ( x == 0.0f )
{
if ( y > 0.0f ) return PIBY2_FLOAT;
if ( y == 0.0f ) return 0.0f;
return -PIBY2_FLOAT;
}
float atan;
float z = y/x;
if ( std::fabs( z ) < 1.0f )
{
atan = z/(1.0f + 0.28f*z*z);
if ( x < 0.0f )
{
if ( y < 0.0f ) return atan - PI_FLOAT;
return atan + PI_FLOAT;
}
}
else
{
atan = PIBY2_FLOAT - z/(z*z + 0.28f);
if ( y < 0.0f ) return atan - PI_FLOAT;
}
return atan;
}
};
#endif /* INCLUDE_DSP_PHASEDISCRI_H_ */