1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-12-23 01:55:48 -05:00
sdrangel/plugins/channelrx/demodadsb/adsbdemodsink.cpp
2024-09-05 13:37:46 +03:00

284 lines
10 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// Copyright (C) 2020 Jon Beniston, M7RCE //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QTime>
#include <QDebug>
#include "adsbdemodsink.h"
#include "adsbdemodsinkworker.h"
#include "adsb.h"
ADSBDemodSink::ADSBDemodSink() :
m_channelSampleRate(6000000),
m_channelFrequencyOffset(0),
m_feedTime(0.0),
m_sampleBuffer{nullptr, nullptr, nullptr},
m_worker(this),
m_writeBuffer(0),
m_writeIdx(0),
m_magsq(0.0f),
m_magsqSum(0.0f),
m_magsqPeak(0.0f),
m_magsqCount(0),
m_messageQueueToGUI(nullptr)
{
applySettings(m_settings, true);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
for (int i = 0; i < m_buffers; i++)
m_bufferWrite[i].release(1);
m_bufferWrite[m_writeBuffer].acquire();
}
ADSBDemodSink::~ADSBDemodSink()
{
for (int i = 0; i < m_buffers; i++)
delete[] m_sampleBuffer[i];
}
void ADSBDemodSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
{
// Start timing how long we are in this function
m_startPoint = boost::chrono::steady_clock::now();
// Optimise for common case, where no resampling or frequency offset
if ((m_interpolatorDistance == 1.0f) && (m_channelFrequencyOffset == 0))
{
for (SampleVector::const_iterator it = begin; it != end; ++it)
{
/*
// SampleVector is vector of qint32 or qint16
// Use integer mul to save one FP conversion and it has lower latency
qint64 r = (qint64)it->real();
qint64 i = (qint64)it->imag();
qint64 magsqRaw = r*r + i*i;
Real magsq = (Real)((double)magsqRaw / (SDR_RX_SCALED*SDR_RX_SCALED));
processOneSample(magsq);
*/
Complex c(it->real(), it->imag());
Real magsq = complexMagSq(c);
processOneSample(magsq);
}
}
else if (m_interpolatorDistance == 1.0f) // just apply offset
{
for (SampleVector::const_iterator it = begin; it != end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
processOneSample(complexMagSq(c));
}
}
else if (m_interpolatorDistance < 1.0f) // interpolate
{
for (SampleVector::const_iterator it = begin; it != end; ++it)
{
Complex c(it->real(), it->imag());
Complex ci;
c *= m_nco.nextIQ();
while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(complexMagSq(ci));
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
}
else // decimate
{
for (SampleVector::const_iterator it = begin; it != end; ++it)
{
Complex c(it->real(), it->imag());
Complex ci;
c *= m_nco.nextIQ();
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(complexMagSq(ci));
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
}
// Calculate number of seconds in this function
boost::chrono::duration<double> sec = boost::chrono::steady_clock::now() - m_startPoint;
m_feedTime += sec.count();
}
void ADSBDemodSink::processOneSample(Real magsq)
{
m_magsqSum += magsq;
if (magsq > m_magsqPeak)
m_magsqPeak = magsq;
m_magsqCount++;
m_sampleBuffer[m_writeBuffer][m_writeIdx] = magsq;
m_writeIdx++;
if (!m_bufferDateTimeValid[m_writeBuffer])
{
m_bufferFirstSampleDateTime[m_writeBuffer] = QDateTime::currentDateTime();
m_bufferDateTimeValid[m_writeBuffer] = true;
}
if (m_writeIdx >= m_bufferSize)
{
m_bufferRead[m_writeBuffer].release();
m_writeBuffer++;
if (m_writeBuffer >= m_buffers)
m_writeBuffer = 0;
// Don't include time spent waiting for a buffer
boost::chrono::duration<double> sec = boost::chrono::steady_clock::now() - m_startPoint;
m_feedTime += sec.count();
if (m_worker.isRunning())
m_bufferWrite[m_writeBuffer].acquire();
m_startPoint = boost::chrono::steady_clock::now();
m_writeIdx = m_samplesPerFrame - 1; // Leave space for copying samples from previous buffer
m_bufferDateTimeValid[m_writeBuffer] = false;
}
}
void ADSBDemodSink::startWorker()
{
qDebug() << "ADSBDemodSink::startWorker";
if (!m_worker.isRunning())
m_worker.start();
}
void ADSBDemodSink::stopWorker()
{
if (m_worker.isRunning())
{
qDebug() << "ADSBDemodSink::stopWorker: Stopping worker";
m_worker.requestInterruption();
// Worker may be blocked waiting for a buffer
for (int i = 0; i < m_buffers; i++)
{
if (m_bufferRead[i].available() == 0)
m_bufferRead[i].release(1);
}
m_worker.wait();
// If this is called from ADSBDemod, we need to also
// make sure baseband sink thread isn't blocked in processOneSample
for (int i = 0; i < m_buffers; i++)
{
if (m_bufferWrite[i].available() == 0)
m_bufferWrite[i].release(1);
}
qDebug() << "ADSBDemodSink::stopWorker: Worker stopped";
}
}
void ADSBDemodSink::init(int samplesPerBit)
{
bool restart = m_worker.isRunning();
if (restart)
{
// Stop worker as we're going to delete the buffers
stopWorker();
}
// Reset state of semaphores
for (int i = 0; i < m_buffers; i++)
{
m_bufferWrite[i].acquire(m_bufferWrite[i].available());
m_bufferWrite[i].release(1);
m_bufferRead[i].acquire(m_bufferRead[i].available());
}
m_writeBuffer = 0;
m_bufferWrite[m_writeBuffer].acquire();
for (int i = 0; i < m_buffers; i++)
{
if (m_sampleBuffer[i])
delete[] m_sampleBuffer[i];
}
m_samplesPerFrame = samplesPerBit*(ADS_B_PREAMBLE_BITS+ADS_B_ES_BITS);
m_samplesPerChip = samplesPerBit/ADS_B_CHIPS_PER_BIT;
m_writeIdx = m_samplesPerFrame - 1; // Leave space for copying samples from previous buffer
m_bufferDateTimeValid[m_writeBuffer] = false;
for (int i = 0; i < m_buffers; i++)
m_sampleBuffer[i] = new Real[m_bufferSize];
if (restart)
startWorker();
}
void ADSBDemodSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "ADSBDemodSink::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset;
if (channelSampleRate == 0) {
return;
}
if ((channelFrequencyOffset != m_channelFrequencyOffset) ||
(channelSampleRate != m_channelSampleRate) || force)
{
m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
}
if ((channelSampleRate != m_channelSampleRate) || force)
{
m_interpolator.create(m_settings.m_interpolatorPhaseSteps, channelSampleRate, m_settings.m_rfBandwidth / 2.2, m_settings.m_interpolatorTapsPerPhase);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) channelSampleRate / (Real) (ADS_B_BITS_PER_SECOND * m_settings.m_samplesPerBit);
}
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
}
void ADSBDemodSink::applySettings(const ADSBDemodSettings& settings, bool force)
{
qDebug() << "ADSBDemodSink::applySettings:"
<< " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
<< " m_rfBandwidth: " << settings.m_rfBandwidth
<< " m_correlationThreshold: " << settings.m_correlationThreshold
<< " m_correlateFullPreamble: " << settings.m_correlateFullPreamble
<< " m_demodModeS: " << settings.m_demodModeS
<< " m_samplesPerBit: " << settings.m_samplesPerBit
<< " force: " << force;
if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth)
|| (settings.m_samplesPerBit != m_settings.m_samplesPerBit)
|| (settings.m_interpolatorPhaseSteps != m_settings.m_interpolatorPhaseSteps)
|| (settings.m_interpolatorTapsPerPhase != m_settings.m_interpolatorTapsPerPhase)
|| force)
{
m_interpolator.create(m_settings.m_interpolatorPhaseSteps, m_channelSampleRate, settings.m_rfBandwidth / 2.2, m_settings.m_interpolatorTapsPerPhase);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_channelSampleRate / (Real) (ADS_B_BITS_PER_SECOND * settings.m_samplesPerBit);
}
if ((settings.m_samplesPerBit != m_settings.m_samplesPerBit) || force)
{
init(settings.m_samplesPerBit);
}
// Forward to worker
ADSBDemodSinkWorker::MsgConfigureADSBDemodSinkWorker *msg = ADSBDemodSinkWorker::MsgConfigureADSBDemodSinkWorker::create(
settings, force);
m_worker.getInputMessageQueue()->push(msg);
m_settings = settings;
}