1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-26 01:39:05 -05:00
sdrangel/plugins/channelrx/demodnfm/nfmdemodsink.cpp
2024-04-11 23:31:34 +02:00

423 lines
15 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019-2023 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// Copyright (C) 2020 Kacper Michajłow <kasper93@gmail.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <cstdio>
#include <complex.h>
#include <QTime>
#include <QDebug>
#include "util/messagequeue.h"
#include "dsp/misc.h"
#include "dsp/datafifo.h"
#include "maincore.h"
#include "nfmdemodreport.h"
#include "nfmdemodsink.h"
const double NFMDemodSink::afSqTones[] = {1000.0, 6000.0}; // {1200.0, 8000.0};
const double NFMDemodSink::afSqTones_lowrate[] = {1000.0, 3500.0};
const unsigned NFMDemodSink::FFT_FILTER_LENGTH = 1024;
const unsigned NFMDemodSink::CTCSS_DETECTOR_RATE = 6000;
NFMDemodSink::NFMDemodSink() :
m_channelSampleRate(48000),
m_channelFrequencyOffset(0),
m_audioSampleRate(48000),
m_audioBufferFill(0),
m_audioFifo(48000),
m_rfFilter(FFT_FILTER_LENGTH),
m_ctcssIndex(0),
m_dcsCode(0),
m_sampleCount(0),
m_squelchCount(0),
m_squelchGate(4800),
m_filterTaps((48000 / 48) | 1),
m_squelchLevel(-990),
m_squelchOpen(false),
m_afSquelchOpen(false),
m_magsq(0.0f),
m_magsqSum(0.0f),
m_magsqPeak(0.0f),
m_magsqCount(0),
m_afSquelch(),
m_squelchDelayLine(24000),
m_messageQueueToGUI(nullptr)
{
m_audioBuffer.resize(1<<14);
m_demodBuffer.resize(1<<12);
m_demodBufferFill = 0;
m_dcsDetector.setSampleRate(CTCSS_DETECTOR_RATE);
m_dcsDetector.setEqWindow(23);
applySettings(m_settings, true);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
}
void NFMDemodSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
{
if (m_channelSampleRate == 0) {
return;
}
for (SampleVector::const_iterator it = begin; it != end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
Complex ci;
fftfilt::cmplx *rf;
int rf_out = m_rfFilter.runFilt(c, &rf); // filter RF before demod
for (int i = 0 ; i < rf_out; i++)
{
if (m_interpolatorDistance == 1.0f)
{
processOneSample(rf[i]);
}
else if (m_interpolatorDistance < 1.0f) // interpolate
{
while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, rf[i], &ci))
{
processOneSample(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
else // decimate
{
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, rf[i], &ci))
{
processOneSample(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
}
}
}
void NFMDemodSink::processOneSample(Complex &ci)
{
qint16 sample = 0;
double magsqRaw; // = ci.real()*ci.real() + c.imag()*c.imag();
Real deviation;
Real demod = m_phaseDiscri.phaseDiscriminatorDelta(ci, magsqRaw, deviation);
Real magsq = magsqRaw / (SDR_RX_SCALED*SDR_RX_SCALED);
m_movingAverage(magsq);
m_magsqSum += magsq;
m_magsqPeak = std::max<double>(magsq, m_magsqPeak);
m_magsqCount++;
m_sampleCount++;
bool squelchOpen = m_afSquelchOpen && m_settings.m_deltaSquelch;
if (m_settings.m_deltaSquelch)
{
if (m_afSquelch.analyze(demod))
{
m_afSquelchOpen = squelchOpen = m_afSquelch.evaluate();
if (!squelchOpen) {
m_squelchDelayLine.zeroBack(m_audioSampleRate/10); // zero out evaluation period
}
}
}
else
{
squelchOpen = m_movingAverage >= m_squelchLevel;
}
if (squelchOpen)
{
m_squelchDelayLine.write(demod);
if (m_squelchCount < 2*m_squelchGate) {
m_squelchCount++;
}
}
else
{
m_squelchDelayLine.write(0);
if (m_squelchCount > 0) {
m_squelchCount--;
}
}
m_squelchOpen = m_squelchCount > m_squelchGate;
int ctcssIndex = m_squelchOpen && m_settings.m_ctcssOn ? m_ctcssIndex : 0;
unsigned int dcsCode = m_squelchOpen && m_settings.m_dcsOn ? m_dcsCode : 0;
if (m_squelchOpen)
{
if (m_settings.m_ctcssOn)
{
int factor = (m_audioSampleRate / CTCSS_DETECTOR_RATE) - 1; // decimate -> 6k
if ((m_sampleCount & factor) == factor)
{
Real ctcssSample = m_ctcssLowpass.filter(demod);
if (m_ctcssDetector.analyze(&ctcssSample))
{
int maxToneIndex;
ctcssIndex = m_ctcssDetector.getDetectedTone(maxToneIndex) ? maxToneIndex + 1 : 0;
}
}
}
else if (m_settings.m_dcsOn)
{
int factor = (m_audioSampleRate / CTCSS_DETECTOR_RATE) - 1; // decimate -> 6k (same decimation as for CTCSS)
if ((m_sampleCount & factor) == factor)
{
Real dcsSample = m_ctcssLowpass.filter(demod);
unsigned int dcsCodeDetected;
if (m_dcsDetector.analyze(&dcsSample, dcsCodeDetected)) {
dcsCode = DCSCodes::m_toCanonicalCode.value(dcsCodeDetected, 0);
}
}
}
if (!m_settings.m_audioMute &&
(!m_settings.m_ctcssOn || m_ctcssIndexSelected == ctcssIndex || m_ctcssIndexSelected == 0) &&
(!m_settings.m_dcsOn || m_dcsCodeSeleted == dcsCode || m_dcsCodeSeleted == 0))
{
Real audioSample = m_squelchDelayLine.readBack(m_squelchGate);
audioSample = m_settings.m_highPass ? m_bandpass.filter(audioSample) : m_lowpass.filter(audioSample);
audioSample *= m_settings.m_volume * std::numeric_limits<int16_t>::max();
sample = clamp<float>(std::rint(audioSample), std::numeric_limits<int16_t>::lowest(), std::numeric_limits<int16_t>::max());
}
}
if (ctcssIndex != m_ctcssIndex)
{
auto *guiQueue = getMessageQueueToGUI();
if (guiQueue)
{
guiQueue->push(NFMDemodReport::MsgReportCTCSSFreq::create(
ctcssIndex ? m_ctcssDetector.getToneSet()[ctcssIndex - 1] : 0));
}
m_ctcssIndex = ctcssIndex;
}
if (dcsCode != m_dcsCode)
{
auto *guiQueue = getMessageQueueToGUI();
if (guiQueue) {
guiQueue->push(NFMDemodReport::MsgReportDCSCode::create(dcsCode));
}
m_dcsCode = dcsCode;
}
m_audioBuffer[m_audioBufferFill].l = sample;
m_audioBuffer[m_audioBufferFill].r = sample;
++m_audioBufferFill;
if (m_audioBufferFill >= m_audioBuffer.size())
{
std::size_t res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], std::min(m_audioBufferFill, m_audioBuffer.size()));
if (res != m_audioBufferFill)
{
qDebug("NFMDemodSink::processOneSample: %lu/%lu audio samples written m_audioSampleRate: %u m_channelSampleRate: %d",
res, m_audioBufferFill, m_audioSampleRate, m_channelSampleRate);
}
m_audioBufferFill = 0;
}
m_demodBuffer[m_demodBufferFill] = sample;
++m_demodBufferFill;
if (m_demodBufferFill >= m_demodBuffer.size())
{
QList<ObjectPipe*> dataPipes;
MainCore::instance()->getDataPipes().getDataPipes(m_channel, "demod", dataPipes);
if (dataPipes.size() > 0)
{
QList<ObjectPipe*>::iterator it = dataPipes.begin();
for (; it != dataPipes.end(); ++it)
{
DataFifo *fifo = qobject_cast<DataFifo*>((*it)->m_element);
if (fifo) {
fifo->write((quint8*) &m_demodBuffer[0], m_demodBuffer.size() * sizeof(qint16), DataFifo::DataTypeI16);
}
}
}
m_demodBufferFill = 0;
}
}
void NFMDemodSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "NFMDemodSink::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset;
if ((channelFrequencyOffset != m_channelFrequencyOffset) ||
(channelSampleRate != m_channelSampleRate) || force)
{
m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
}
if ((channelSampleRate != m_channelSampleRate) || force)
{
m_interpolator.create(16, channelSampleRate, m_settings.m_rfBandwidth / 2.2);
m_interpolatorDistance = Real(channelSampleRate) / Real(m_audioSampleRate);
m_interpolatorDistanceRemain = m_interpolatorDistance;
Real lowCut = -Real(m_settings.m_fmDeviation) / channelSampleRate;
Real hiCut = Real(m_settings.m_fmDeviation) / channelSampleRate;
m_rfFilter.create_filter(lowCut, hiCut);
}
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
}
void NFMDemodSink::applySettings(const NFMDemodSettings& settings, bool force)
{
qDebug() << "NFMDemodSink::applySettings:"
<< " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
<< " m_rfBandwidth: " << settings.m_rfBandwidth
<< " m_afBandwidth: " << settings.m_afBandwidth
<< " m_fmDeviation: " << settings.m_fmDeviation
<< " m_volume: " << settings.m_volume
<< " m_squelchGate: " << settings.m_squelchGate
<< " m_deltaSquelch: " << settings.m_deltaSquelch
<< " m_squelch: " << settings.m_squelch
<< " m_ctcssIndex: " << settings.m_ctcssIndex
<< " m_ctcssOn: " << settings.m_ctcssOn
<< " m_dcsOn: " << settings.m_dcsOn
<< " m_dcsCode: " << settings.m_dcsCode
<< " m_dcsPositive: " << settings.m_dcsPositive
<< " m_highPass: " << settings.m_highPass
<< " m_audioMute: " << settings.m_audioMute
<< " m_audioDeviceName: " << settings.m_audioDeviceName
<< " force: " << force;
if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || force)
{
m_interpolator.create(16, m_channelSampleRate, settings.m_rfBandwidth / 2.2);
m_interpolatorDistance = Real(m_channelSampleRate) / Real(m_audioSampleRate);
m_interpolatorDistanceRemain = m_interpolatorDistance;
}
if ((settings.m_fmDeviation != m_settings.m_fmDeviation) || force) {
Real lowCut = -Real(settings.m_fmDeviation) / m_channelSampleRate;
Real hiCut = Real(settings.m_fmDeviation) / m_channelSampleRate;
m_rfFilter.create_filter(lowCut, hiCut);
m_phaseDiscri.setFMScaling(Real(m_audioSampleRate) / (2.0f * settings.m_fmDeviation));
}
if ((settings.m_afBandwidth != m_settings.m_afBandwidth) || force)
{
m_bandpass.create(m_filterTaps, m_audioSampleRate, 300.0, settings.m_afBandwidth);
m_lowpass.create(m_filterTaps, m_audioSampleRate, settings.m_afBandwidth);
}
if ((settings.m_squelchGate != m_settings.m_squelchGate) || force)
{
m_squelchGate = (m_audioSampleRate / 100) * settings.m_squelchGate; // gate is given in 10s of ms at 48000 Hz audio sample rate
m_squelchCount = 0; // reset squelch open counter
}
if ((settings.m_squelch != m_settings.m_squelch) ||
(settings.m_deltaSquelch != m_settings.m_deltaSquelch) || force)
{
if (settings.m_deltaSquelch)
{ // input is a value in negative centis
m_squelchLevel = (- settings.m_squelch) / 100.0;
m_afSquelch.setThreshold(m_squelchLevel);
m_afSquelch.reset();
}
else
{ // input is a value in deci-Bels
m_squelchLevel = std::pow(10.0, settings.m_squelch / 10.0);
m_movingAverage.reset();
}
m_squelchCount = 0; // reset squelch open counter
}
if ((settings.m_ctcssIndex != m_settings.m_ctcssIndex) || force) {
setSelectedCtcssIndex(settings.m_ctcssIndex);
}
if ((settings.m_dcsCode != m_settings.m_dcsCode) ||
(settings.m_dcsPositive != m_settings.m_dcsPositive) || force)
{
setSelectedDcsCode(settings.m_dcsCode, settings.m_dcsPositive);
}
m_settings = settings;
}
void NFMDemodSink::applyAudioSampleRate(unsigned int sampleRate)
{
qDebug("NFMDemodSink::applyAudioSampleRate: %u m_channelSampleRate: %d", sampleRate, m_channelSampleRate);
m_filterTaps = (sampleRate / 48) | 1;
m_ctcssLowpass.create((CTCSS_DETECTOR_RATE / 48) | 1, CTCSS_DETECTOR_RATE, 250.0);
m_bandpass.create(m_filterTaps, sampleRate, 300.0, m_settings.m_afBandwidth);
m_lowpass.create(m_filterTaps, sampleRate, m_settings.m_afBandwidth);
m_squelchGate = (sampleRate / 100) * m_settings.m_squelchGate; // gate is given in 10s of ms at 48000 Hz audio sample rate
m_squelchCount = 0; // reset squelch open counter
m_ctcssDetector.setCoefficients(sampleRate/16, CTCSS_DETECTOR_RATE); // 0.5s / 2 Hz resolution
if (sampleRate < 16000) {
m_afSquelch.setCoefficients(sampleRate/2000, 600, sampleRate, 200, 0, afSqTones_lowrate); // 0.5ms test period, 300ms average span, audio SR, 100ms attack, no decay
} else {
m_afSquelch.setCoefficients(sampleRate/2000, 600, sampleRate, 200, 0, afSqTones); // 0.5ms test period, 300ms average span, audio SR, 100ms attack, no decay
}
m_afSquelch.setThreshold(m_squelchLevel);
m_phaseDiscri.setFMScaling(Real(sampleRate) / (2.0f * m_settings.m_fmDeviation));
m_audioFifo.setSize(sampleRate);
m_squelchDelayLine.resize(sampleRate/2);
m_interpolatorDistance = Real(m_channelSampleRate) / Real(sampleRate);
m_interpolatorDistanceRemain = m_interpolatorDistance;
m_audioSampleRate = sampleRate;
QList<ObjectPipe*> pipes;
MainCore::instance()->getMessagePipes().getMessagePipes(m_channel, "reportdemod", pipes);
if (pipes.size() > 0)
{
for (const auto& pipe : pipes)
{
MessageQueue *messageQueue = qobject_cast<MessageQueue*>(pipe->m_element);
MainCore::MsgChannelDemodReport *msg = MainCore::MsgChannelDemodReport::create(m_channel, sampleRate);
messageQueue->push(msg);
}
}
}