1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-03 07:21:14 -05:00
sdrangel/plugins/channeltx/modatv/atvmodsource.h
2020-08-03 13:07:06 +02:00

622 lines
25 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef PLUGINS_CHANNELTX_MODATV_ATVMODSOURCE_H_
#define PLUGINS_CHANNELTX_MODATV_ATVMODSOURCE_H_
#include <vector>
#include <QObject>
#include <QMutex>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/videoio.hpp>
#include <stdint.h>
#include "dsp/channelsamplesource.h"
#include "dsp/nco.h"
#include "dsp/interpolator.h"
#include "util/movingaverage.h"
#include "dsp/fftfilt.h"
#include "util/message.h"
#include "atvmodsettings.h"
class MessageQueue;
class ATVModSource : public ChannelSampleSource
{
public:
ATVModSource();
~ATVModSource();
virtual void pull(SampleVector::iterator begin, unsigned int nbSamples);
virtual void pullOne(Sample& sample);
virtual void prefetch(unsigned int nbSamples);
int getEffectiveSampleRate() const { return m_tvSampleRate; };
double getMagSq() const { return m_movingAverage.asDouble(); }
void getCameraNumbers(std::vector<int>& numbers);
void setMessageQueueToGUI(MessageQueue *messageQueue) { m_messageQueueToGUI = messageQueue; }
void getLevels(qreal& rmsLevel, qreal& peakLevel, int& numSamples) const
{
rmsLevel = m_rmsLevel;
peakLevel = m_peakLevelOut;
numSamples = m_levelNbSamples;
}
void applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force = false);
void applySettings(const ATVModSettings& settings, bool force = false);
void openImage(const QString& fileName);
void openVideo(const QString& fileName);
void seekVideoFileStream(int seekPercentage);
void reportVideoFileSourceStreamTiming();
void configureCameraIndex(int index);
void configureCameraData(uint32_t index, float mnaualFPS, bool manualFPSEnable);
static void getBaseValues(int outputSampleRate, int linesPerSecond, int& sampleRateUnits, uint32_t& nbPointsPerRateUnit);
static float getRFBandwidthDivisor(ATVModSettings::ATVModulation modulation);
private:
class ATVCamera
{
public:
cv::VideoCapture m_camera; //!< camera object
cv::Mat m_videoframeOriginal; //!< camera non resized image
cv::Mat m_videoFrame; //!< displayable camera frame
int m_cameraNumber; //!< camera device number
float m_videoFPS; //!< camera FPS rate
float m_videoFPSManual; //!< camera FPS rate manually set
bool m_videoFPSManualEnable; //!< Enable camera FPS rate manual set value
int m_videoWidth; //!< camera frame width
int m_videoHeight; //!< camera frame height
float m_videoFx; //!< camera horizontal scaling factor
float m_videoFy; //!< camera vertictal scaling factor
float m_videoFPSq; //!< camera FPS sacaling factor
float m_videoFPSqManual; //!< camera FPS sacaling factor manually set
float m_videoFPSCount; //!< camera FPS fractional counter
int m_videoPrevFPSCount; //!< camera FPS previous integer counter
ATVCamera() :
m_cameraNumber(-1),
m_videoFPS(25.0f),
m_videoFPSManual(20.0f),
m_videoFPSManualEnable(false),
m_videoWidth(1),
m_videoHeight(1),
m_videoFx(1.0f),
m_videoFy(1.0f),
m_videoFPSq(1.0f),
m_videoFPSqManual(1.0f),
m_videoFPSCount(0.0f),
m_videoPrevFPSCount(0)
{}
ATVCamera(const ATVCamera& camera) :
m_camera(camera.m_camera),
m_videoframeOriginal(camera.m_videoframeOriginal),
m_videoFrame(camera.m_videoFrame),
m_cameraNumber(camera.m_cameraNumber),
m_videoFPS(camera.m_videoFPS),
m_videoFPSManual(camera.m_videoFPSManual),
m_videoFPSManualEnable(camera.m_videoFPSManualEnable),
m_videoWidth(camera.m_videoWidth),
m_videoHeight(camera.m_videoHeight),
m_videoFx(camera.m_videoFx),
m_videoFy(camera.m_videoFy),
m_videoFPSq(camera.m_videoFPSq),
m_videoFPSqManual(camera.m_videoFPSqManual),
m_videoFPSCount(camera.m_videoFPSCount),
m_videoPrevFPSCount(camera.m_videoPrevFPSCount)
{}
};
enum LineType
{
LineImage, //!< Full image line
LineImageHalf1Short, //!< Half image line first then short pulse
LineImageHalf1Broad, //!< Half image line first then broad pulse
LineImageHalf2, //!< Half image line first black then image
LineShortPulses, //!< VSync short pulses a.k.a equalizing
LineBroadPulses, //!< VSync broad pulses a.k.a field sync
LineShortBroadPulses, //!< VSync short then broad pulses
LineBroadShortPulses, //!< VSync broad then short pulses
LineShortBlackPulses, //!< VSync short pulse then black
LineBlack, //!< Full black line
};
int m_channelSampleRate;
int m_channelFrequencyOffset;
ATVModSettings m_settings;
NCO m_carrierNco;
Complex m_modSample;
float m_modPhasor; //!< For FM modulation
Interpolator m_interpolator;
Real m_interpolatorDistance;
Real m_interpolatorDistanceRemain;
int m_tvSampleRate; //!< sample rate for generating signal
uint32_t m_pointsPerLine; //!< Number of points per full line
int m_pointsPerSync; //!< number of line points for the horizontal sync
int m_pointsPerBP; //!< number of line points for the back porch
int m_pointsPerImgLine; //!< number of line points for the image line
uint32_t m_pointsPerFP; //!< number of line points for the front porch
int m_pointsPerVEqu; //!< number of line points for the equalizing (short) pulse
int m_pointsPerVSync; //!< number of line points for the vertical sync (broad) pulse
int m_nbLines; //!< number of lines per complete frame
int m_nbLines2; //!< same number as above (non interlaced) or Euclidean half the number above (interlaced)
int m_nbLinesField1; //!< In interlaced mode: number of lines in field1 transition included
uint32_t m_nbImageLines2; //!< half the number of effective image lines
uint32_t m_nbImageLines; //!< number of effective image lines
uint32_t m_imageLineStart1; //!< start index of line for field 1
uint32_t m_imageLineStart2; //!< start index of line for field 2
int m_nbHorizPoints; //!< number of line points per horizontal line
float m_blankLineLvel; //!< video level of blank lines
uint32_t m_pointsPerHBar; //!< number of line points for a bar of the bar chart
float m_hBarIncrement; //!< video level increment at each horizontal bar increment
uint32_t m_linesPerVBar; //!< number of lines for a bar of the bar chart
float m_vBarIncrement; //!< video level increment at each vertical bar increment
bool m_interlaced; //!< true if image is interlaced (2 half frames per frame)
int m_horizontalCount; //!< current point index on line
int m_lineCount; //!< current line index in frame
int m_imageLine; //!< current line index in image
float m_fps; //!< resulting frames per second
LineType m_lineType; //!< current line type
MovingAverageUtil<double, double, 16> m_movingAverage;
quint32 m_levelCalcCount;
qreal m_rmsLevel;
qreal m_peakLevelOut;
Real m_peakLevel;
Real m_levelSum;
cv::Mat m_imageFromFile; //!< original image not resized not overlaid by text
cv::Mat m_imageOriginal; //!< original not resized image
cv::Mat m_image; //!< resized image for transmission at given rate
bool m_imageOK;
cv::VideoCapture m_video; //!< current video capture
cv::Mat m_videoframeOriginal; //!< current frame from video
cv::Mat m_videoFrame; //!< current displayable video frame
float m_videoFPS; //!< current video FPS rate
int m_videoWidth; //!< current video frame width
int m_videoHeight; //!< current video frame height
float m_videoFx; //!< current video horizontal scaling factor
float m_videoFy; //!< current video vertictal scaling factor
float m_videoFPSq; //!< current video FPS sacaling factor
float m_videoFPSCount; //!< current video FPS fractional counter
int m_videoPrevFPSCount; //!< current video FPS previous integer counter
int m_videoLength; //!< current video length in frames
bool m_videoEOF; //!< current video has reached end of file
bool m_videoOK;
std::vector<ATVCamera> m_cameras; //!< vector of available cameras
int m_cameraIndex; //!< curent camera index in list of available cameras
std::string m_overlayText;
QString m_imageFileName;
QString m_videoFileName;
// Used for standard SSB
fftfilt* m_SSBFilter;
Complex* m_SSBFilterBuffer;
int m_SSBFilterBufferIndex;
// Used for vestigial SSB with asymmetrical filtering (needs double sideband scheme)
fftfilt* m_DSBFilter;
Complex* m_DSBFilterBuffer;
int m_DSBFilterBufferIndex;
MessageQueue *m_messageQueueToGUI;
static const int m_ssbFftLen;
static const float m_blackLevel;
static const float m_spanLevel;
static const int m_levelNbSamples;
static const int m_nbBars; //!< number of bars in bar or chessboard patterns
static const int m_cameraFPSTestNbFrames; //!< number of frames for camera FPS test
static const LineType StdPAL625_F1Start[];
static const LineType StdPAL625_F2Start[];
static const LineType StdPAL525_F1Start[];
static const LineType StdPAL525_F2Start[];
static const LineType Std819_F1Start[];
static const LineType Std819_F2Start[];
static const LineType StdShort_F1Start[];
static const LineType StdShort_F2Start[];
void pullFinalize(Complex& ci, Sample& sample);
void pullVideo(Real& sample);
void calculateLevel(Real& sample);
void modulateSample();
Complex& modulateSSB(Real& sample);
Complex& modulateVestigialSSB(Real& sample);
void applyStandard(const ATVModSettings& settings);
void resizeImage();
void calculateVideoSizes();
void resizeVideo();
void scanCameras();
void releaseCameras();
void calculateCamerasSizes();
void resizeCameras();
void resizeCamera();
void mixImageAndText(cv::Mat& image);
MessageQueue *getMessageQueueToGUI() { return m_messageQueueToGUI; }
inline LineType getLineType(ATVModSettings::ATVStd standard, int lineNumber)
{
if (standard == ATVModSettings::ATVStdHSkip)
{
return LineImage; // all lines are image lines
}
else if (standard == ATVModSettings::ATVStdPAL625) // m_nbLines2 = 312 - fieldLine 0 = 313
{
if (lineNumber < m_nbLines2)
{
if (lineNumber < 5) { // field 1 start (0..4 in line index = line number - 1)
return StdPAL625_F1Start[lineNumber];
} else if (lineNumber < 22) { // field 1 black lines (5..21)
return LineBlack;
} else if (lineNumber == 22) { // field 1 half image line (22)
return LineImageHalf2;
} else if (lineNumber < m_nbLines2 - 2) { // field 1 full image (23..309)
return LineImage;
} else if (lineNumber < m_nbLines2) { // field 1 bottom (310..311)
return LineShortPulses;
}
}
else if (lineNumber == m_nbLines2) // field transition 1 -> 2 (312)
{
return LineShortBroadPulses;
}
else
{
int fieldLine = lineNumber - m_nbLines2 - 1;
if (fieldLine < 5) { // field 2 start (313..(313+5-1=317))
return StdPAL625_F2Start[fieldLine];
} else if (fieldLine < 22) { // field 2 black lines (318..(313+22-1=334))
return LineBlack;
} else if (fieldLine < m_nbLines2 - 3) { // field 2 full image (335..(313+309-1=621))
return LineImage;
} else if (fieldLine == m_nbLines2 - 3) { // field 2 half image line (313+309=622)
return LineImageHalf1Short;
} else { // field 2 bottom (623..624..)
return LineShortPulses;
}
}
}
else if (standard == ATVModSettings::ATVStdPAL525) // m_nbLines2 = 262 - fieldLine 0 = 263
{
if (lineNumber < m_nbLines2)
{
if (lineNumber < 9) { // field 1 start (0..8 in line index)
return StdPAL525_F1Start[lineNumber];
} else if (lineNumber < 20) { // field 1 black lines (9..19)
return LineBlack;
} else if (lineNumber < m_nbLines2) { // field 1 full image (20..261)
return LineImage;
}
}
else if (lineNumber == m_nbLines2) // field transition 1 -> 2 or field 1 half image line (262)
{
return LineImageHalf1Short;
}
else
{
int fieldLine = lineNumber - m_nbLines2 - 1;
if (fieldLine < 9) { // field 2 start (263..(263+9-1=271))
return StdPAL525_F2Start[fieldLine];
} else if (fieldLine < 19) { // field 2 black lines (272..(263+19-1=281))
return LineBlack;
} else if (fieldLine == 19) { // field 2 half image line (263+19=282)
return LineImageHalf2;
} else if (fieldLine < m_nbLines2) { // field 2 full line (283..(263+262-1=524))
return LineImage;
} else { // failsafe: should not get there - same as field 1 start first line
return LineShortPulses;
}
}
}
else if (standard == ATVModSettings::ATVStd819) // Standard F (Belgian) - m_nbLines2 = 409 - fieldLine 0 = 409
{
if (lineNumber < m_nbLines2)
{
if (lineNumber < 7) { // field 1 start (0..6 in line index)
return Std819_F1Start[lineNumber];
} else if (lineNumber < 26) { // field 1 black lines (7..25)
return LineBlack;
} else if (lineNumber == 26) { // field 1 half image line (26)
return LineImageHalf2;
} else if (lineNumber < m_nbLines2 - 3) { // field 1 full image (27..405) - 379 lines
return LineImage;
} else if (lineNumber < m_nbLines2) { // field 1 bottom (405..408)
return LineShortPulses;
}
}
else if (lineNumber == m_nbLines2) // transition field 1 -> 2 (409)
{
return LineShortBroadPulses;
}
else
{
int fieldLine = lineNumber - m_nbLines2 - 1;
if (fieldLine < 6) { // field 2 start (410..(410+6-1=415))
return Std819_F2Start[fieldLine];
} else if (fieldLine < 26) { // field 2 black lines (416..(410+26-1=435))
return LineBlack;
} else if (fieldLine < m_nbLines2 - 4) { // field 2 full image (436..(410+405-1=814)) - 379 lines
return LineImage;
} else if (fieldLine == m_nbLines2 - 4) { // field 2 half image line (410+405=815)
return LineImageHalf1Short;
} else { // field 2 bottom (816..818..)
return LineShortPulses;
}
}
}
else if (standard == ATVModSettings::ATVStdShortInterlaced)
{
if (lineNumber < m_nbLines2)
{
if (lineNumber < 2) {
return StdShort_F1Start[lineNumber];
} else {
return LineImage;
}
}
else
{
int fieldLine = lineNumber - m_nbLines2;
if (fieldLine < 2) {
return StdShort_F2Start[fieldLine];
} else if (fieldLine < m_nbLines2) {
return LineImage;
} else { // failsafe - will add a black line for odd number of lines
return LineBlack;
}
}
}
else if (standard == ATVModSettings::ATVStdShort)
{
if (lineNumber < 2) {
return StdShort_F2Start[lineNumber];
} else if (lineNumber < m_nbLines) {
return LineImage;
} else {
return LineBlack;
}
}
return LineBlack;
}
inline void pullImageLastHalfSample(Real& sample)
{
if (m_horizontalCount < m_pointsPerSync + m_pointsPerBP) { // sync
pullImageSample(sample);
} else if (m_horizontalCount < (m_nbHorizPoints/2)) {
sample = m_blackLevel;
} else {
pullImageSample(sample);
}
}
inline void pullImageFirstHalfShortSample(Real& sample)
{
if (m_horizontalCount < (m_nbHorizPoints/2)) {
pullImageSample(sample);
} else {
pullVSyncLineEquPulsesSample(sample);
}
}
inline void pullImageFirstHalfBroadSample(Real& sample)
{
if (m_horizontalCount < (m_nbHorizPoints/2)) {
pullImageSample(sample);
} else {
pullVSyncLineLongPulsesSample(sample);
}
}
inline void pullImageSample(Real& sample, bool noHSync = false)
{
if (m_horizontalCount < m_pointsPerSync) // sync pulse
{
sample = noHSync ? m_blackLevel : 0.0f; // ultra-black
}
else if (m_horizontalCount < m_pointsPerSync + m_pointsPerBP) // back porch
{
sample = m_blackLevel; // black
}
else if (m_horizontalCount < m_pointsPerSync + m_pointsPerBP + m_pointsPerImgLine)
{
if (m_imageLine >= m_nbImageLines) // out of image zone
{
sample = m_spanLevel * m_settings.m_uniformLevel + m_blackLevel; // uniform line
return;
}
int pointIndex = m_horizontalCount - (m_pointsPerSync + m_pointsPerBP);
switch(m_settings.m_atvModInput)
{
case ATVModSettings::ATVModInputHBars:
sample = (pointIndex / m_pointsPerHBar) * m_hBarIncrement + m_blackLevel;
break;
case ATVModSettings::ATVModInputVBars:
sample = (m_imageLine / m_linesPerVBar) * m_vBarIncrement + m_blackLevel;
break;
case ATVModSettings::ATVModInputChessboard:
sample = (((m_imageLine / m_linesPerVBar)*5 + (pointIndex / m_pointsPerHBar)) % 2) * m_spanLevel * m_settings.m_uniformLevel + m_blackLevel;
break;
case ATVModSettings::ATVModInputHGradient:
sample = (pointIndex / (float) m_pointsPerImgLine) * m_spanLevel + m_blackLevel;
break;
case ATVModSettings::ATVModInputVGradient:
sample = (m_imageLine / (float) m_nbImageLines) * m_spanLevel + m_blackLevel;
break;
case ATVModSettings::ATVModInputDiagonal:
sample = pointIndex < (m_imageLine * m_pointsPerImgLine) / m_nbImageLines ? m_blackLevel : m_settings.m_uniformLevel + m_blackLevel;
break;
case ATVModSettings::ATVModInputImage:
if (!m_imageOK || m_image.empty())
{
sample = m_spanLevel * m_settings.m_uniformLevel + m_blackLevel;
}
else
{
unsigned char pixv;
pixv = m_image.at<unsigned char>(m_imageLine, pointIndex); // row (y), col (x)
sample = (pixv / 256.0f) * m_spanLevel + m_blackLevel;
}
break;
case ATVModSettings::ATVModInputVideo:
if (!m_videoOK || m_videoFrame.empty())
{
sample = m_spanLevel * m_settings.m_uniformLevel + m_blackLevel;
}
else
{
unsigned char pixv;
pixv = m_videoFrame.at<unsigned char>(m_imageLine, pointIndex); // row (y), col (x)
sample = (pixv / 256.0f) * m_spanLevel + m_blackLevel;
}
break;
case ATVModSettings::ATVModInputCamera:
if (m_cameraIndex < 0)
{
sample = m_spanLevel * m_settings.m_uniformLevel + m_blackLevel;
}
else
{
ATVCamera& camera = m_cameras[m_cameraIndex];
if (camera.m_videoFrame.empty())
{
sample = m_spanLevel * m_settings.m_uniformLevel + m_blackLevel;
}
else
{
unsigned char pixv;
pixv = camera.m_videoFrame.at<unsigned char>(m_imageLine, pointIndex); // row (y), col (x)
sample = (pixv / 256.0f) * m_spanLevel + m_blackLevel;
}
}
break;
case ATVModSettings::ATVModInputUniform:
default:
sample = m_spanLevel * m_settings.m_uniformLevel + m_blackLevel; // uniform line
}
}
else // front porch
{
sample = m_blackLevel; // black
}
}
inline void pullVSyncLineEquPulsesSample(Real& sample)
{
if (m_horizontalCount < m_pointsPerVEqu) {
sample = 0.0f; // ultra-black
} else if (m_horizontalCount < (m_nbHorizPoints/2)) {
sample = m_blackLevel; // black
} else if (m_horizontalCount < (m_nbHorizPoints/2) + m_pointsPerVEqu) {
sample = 0.0f; // ultra-black
} else {
sample = m_blackLevel; // black
}
}
inline void pullVSyncLineLongPulsesSample(Real& sample)
{
if (m_horizontalCount < m_pointsPerVSync) {
sample = 0.0f; // ultra-black
} else if (m_horizontalCount < (m_nbHorizPoints/2)) {
sample = m_blackLevel; // black
} else if (m_horizontalCount < (m_nbHorizPoints/2) + m_pointsPerVSync) {
sample = 0.0f; // ultra-black
} else {
sample = m_blackLevel; // black
}
}
inline void pullVSyncLineEquLongPulsesSample(Real& sample)
{
if (m_horizontalCount < m_pointsPerVEqu) {
sample = 0.0f; // ultra-black
} else if (m_horizontalCount < (m_nbHorizPoints/2)) {
sample = m_blackLevel; // black
} else if (m_horizontalCount < (m_nbHorizPoints/2) + m_pointsPerVSync) {
sample = 0.0f; // ultra-black
} else {
sample = m_blackLevel; // black
}
}
inline void pullVSyncLineEquBlackPulsesSample(Real& sample)
{
if (m_horizontalCount < m_pointsPerVEqu) {
sample = 0.0f; // ultra-black
} else {
sample = m_blackLevel; // black
}
}
inline void pullVSyncLineLongEquPulsesSample(Real& sample)
{
if (m_horizontalCount < m_pointsPerVSync) {
sample = 0.0f; // ultra-black
} else if (m_horizontalCount < (m_nbHorizPoints/2)) {
sample = m_blackLevel; // black
} else if (m_horizontalCount < (m_nbHorizPoints/2) + m_pointsPerVEqu) {
sample = 0.0f; // ultra-black
} else {
sample = m_blackLevel; // black
}
}
inline void pullVSyncLineLongBlackPulsesSample(Real& sample)
{
if (m_horizontalCount < m_pointsPerVSync) {
sample = 0.0f; // ultra-black
} else {
sample = m_blackLevel; // black
}
}
inline void pullBlackLineSample(Real& sample)
{
if (m_horizontalCount < m_pointsPerSync) {
sample = 0.0f; // ultra-black
} else {
sample = m_blackLevel; // black
}
}
};
#endif /* PLUGINS_CHANNELTX_MODATV_ATVMOD_H_ */