mirror of
https://github.com/f4exb/sdrangel.git
synced 2024-11-15 21:01:45 -05:00
156 lines
3.6 KiB
C++
156 lines
3.6 KiB
C++
// This file is part of LeanSDR Copyright (C) 2016-2018 <pabr@pabr.org>.
|
|
// See the toplevel README for more information.
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef LEANSDR_MATH_H
|
|
#define LEANSDR_MATH_H
|
|
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
|
|
namespace leansdr
|
|
{
|
|
|
|
template <typename T>
|
|
struct complex
|
|
{
|
|
T re, im;
|
|
complex() {}
|
|
complex(T x) : re(x), im(0) {}
|
|
complex(T x, T y) : re(x), im(y) {}
|
|
inline void operator+=(const complex<T> &x)
|
|
{
|
|
re += x.re;
|
|
im += x.im;
|
|
}
|
|
inline void operator*=(const complex<T> &c)
|
|
{
|
|
T tre = re * c.re - im * c.im;
|
|
im = re * c.im + im * c.re;
|
|
re = tre;
|
|
}
|
|
inline void operator*=(const T &k)
|
|
{
|
|
re *= k;
|
|
im *= k;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
complex<T> operator+(const complex<T> &a, const complex<T> &b)
|
|
{
|
|
return complex<T>(a.re + b.re, a.im + b.im);
|
|
}
|
|
|
|
template <typename T>
|
|
complex<T> operator*(const complex<T> &a, const complex<T> &b)
|
|
{
|
|
return complex<T>(a.re * b.re - a.im * b.im, a.re * b.im + a.im * b.re);
|
|
}
|
|
|
|
template <typename T>
|
|
complex<T> operator*(const complex<T> &a, const T &k)
|
|
{
|
|
return complex<T>(a.re * k, a.im * k);
|
|
}
|
|
|
|
template <typename T>
|
|
complex<T> operator*(const T &k, const complex<T> &a)
|
|
{
|
|
return complex<T>(k * a.re, k * a.im);
|
|
}
|
|
|
|
template <typename T>
|
|
T dotprod(const T *u, const T *v, int n)
|
|
{
|
|
T acc = 0;
|
|
while (n--)
|
|
acc += (*u++) * (*v++);
|
|
return acc;
|
|
}
|
|
|
|
template <typename T>
|
|
inline T cnorm2(const complex<T> &u)
|
|
{
|
|
return u.re * u.re + u.im * u.im;
|
|
}
|
|
|
|
template <typename T>
|
|
T cnorm2(const complex<T> *p, int n)
|
|
{
|
|
T res = 0;
|
|
for (; n--; ++p)
|
|
res += cnorm2(*p);
|
|
return res;
|
|
}
|
|
|
|
// Return conj(u)*v
|
|
template <typename T>
|
|
inline complex<T> conjprod(const complex<T> &u, const complex<T> &v)
|
|
{
|
|
return complex<T>(u.re * v.re + u.im * v.im,
|
|
u.re * v.im - u.im * v.re);
|
|
}
|
|
|
|
// Return sum(conj(u[i])*v[i])
|
|
template <typename T>
|
|
complex<T> conjprod(const complex<T> *u, const complex<T> *v, int n)
|
|
{
|
|
complex<T> acc = 0;
|
|
while (n--)
|
|
acc += conjprod(*u++, *v++);
|
|
return acc;
|
|
}
|
|
|
|
// TBD Optimize with dedicated instructions
|
|
int hamming_weight(uint8_t x);
|
|
int hamming_weight(uint16_t x);
|
|
int hamming_weight(uint32_t x);
|
|
int hamming_weight(uint64_t x);
|
|
unsigned char parity(uint8_t x);
|
|
unsigned char parity(uint16_t x);
|
|
unsigned char parity(uint32_t x);
|
|
unsigned char parity(uint64_t x);
|
|
int log2i(uint64_t x);
|
|
|
|
// Pre-computed sin/cos for 16-bit angles
|
|
|
|
struct trig16
|
|
{
|
|
complex<float> lut[65536]; // TBD static and shared
|
|
trig16()
|
|
{
|
|
for (int a = 0; a < 65536; ++a)
|
|
{
|
|
float af = a * 2 * M_PI / 65536;
|
|
lut[a].re = cosf(af);
|
|
lut[a].im = sinf(af);
|
|
}
|
|
}
|
|
inline const complex<float> &expi(uint16_t a) const
|
|
{
|
|
return lut[a];
|
|
}
|
|
// a must fit in a int32_t, otherwise behaviour is undefined
|
|
inline const complex<float> &expi(float a) const
|
|
{
|
|
return expi((uint16_t)(int16_t)(int32_t)a);
|
|
}
|
|
};
|
|
|
|
} // namespace leansdr
|
|
|
|
#endif // LEANSDR_MATH_H
|