1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-12-23 10:05:46 -05:00
sdrangel/plugins/channelrx/heatmap/heatmapsink.cpp
2024-04-11 23:31:34 +02:00

224 lines
7.7 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2023 Jon Beniston, M7RCE <jon@beniston.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QDebug>
#include <complex.h>
#include "dsp/scopevis.h"
#include "heatmap.h"
#include "heatmapsink.h"
HeatMapSink::HeatMapSink(HeatMap *heatMap) :
m_scopeSink(nullptr),
m_heatMap(heatMap),
m_channelSampleRate(10000),
m_channelFrequencyOffset(0),
m_magsq(0.0),
m_magsqSum(0.0),
m_magsqPeak(0.0),
m_magsqCount(0),
m_messageQueueToChannel(nullptr),
m_sampleBufferSize(1000),
m_sampleBufferIndex(0)
{
resetMagLevels();
m_sampleBuffer.resize(m_sampleBufferSize);
applySettings(m_settings, true);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
}
HeatMapSink::~HeatMapSink()
{
}
void HeatMapSink::sampleToScope(Complex sample)
{
if (m_scopeSink)
{
Real r = std::real(sample) * SDR_RX_SCALEF;
Real i = std::imag(sample) * SDR_RX_SCALEF;
m_sampleBuffer[m_sampleBufferIndex++] = Sample(r, i);
if (m_sampleBufferIndex >= m_sampleBufferSize)
{
std::vector<SampleVector::const_iterator> vbegin;
vbegin.push_back(m_sampleBuffer.begin());
m_scopeSink->feed(vbegin, m_sampleBufferSize);
m_sampleBufferIndex = 0;
}
}
}
void HeatMapSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
{
QMutexLocker mutexLocker(&m_mutex); // Is this too coarse, depending on size of sample vector?
Complex ci;
for (SampleVector::const_iterator it = begin; it != end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if (m_interpolatorDistance < 1.0f) // interpolate
{
while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
else // decimate
{
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
}
}
void HeatMapSink::processOneSample(Complex &ci)
{
Real re = ci.real() / SDR_RX_SCALEF;
Real im = ci.imag() / SDR_RX_SCALEF;
Real magsq = re*re + im*im;
m_movingAverage(magsq);
m_magsq = m_movingAverage.asDouble();
m_magsqSum += magsq;
if (magsq > m_magsqPeak) {
m_magsqPeak = magsq;
}
m_magsqCount++;
// Although computationally more expensive to take the square root here,
// it possibly reduces problems of accumulating numbers
// that may differ significantly in magnitude, for long averages
double mag = sqrt((double)magsq);
m_magSum += mag;
if (mag > m_pulseThresholdLinear)
{
m_magPulseSum += mag;
m_magPulseCount++;
if (m_magPulseCount >= m_averageCnt)
{
m_magPulseAvg = m_magPulseSum / m_magPulseCount;
m_magPulseSum = 0.0;
m_magPulseCount = 0;
}
}
if (mag > m_magMaxPeak) {
m_magMaxPeak = mag;
}
if (mag < m_magMinPeak) {
m_magMinPeak = mag;
}
m_magCount++;
if (m_magCount >= m_averageCnt)
{
m_magAvg = m_magSum / m_magCount;
m_magSum = 0.0;
m_magCount = 0;
}
// Sample to feed to scope (so we can see power at channel sample rate)
Complex scopeSample;
scopeSample.real(ci.real() / SDR_RX_SCALEF);
scopeSample.imag(ci.imag() / SDR_RX_SCALEF);
sampleToScope(scopeSample);
}
void HeatMapSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "HeatMapSink::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset;
if ((m_channelFrequencyOffset != channelFrequencyOffset) ||
(m_channelSampleRate != channelSampleRate) || force)
{
m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
}
if ((m_channelSampleRate != channelSampleRate) || force)
{
m_interpolator.create(16, channelSampleRate, m_settings.m_rfBandwidth / 2.2);
m_interpolatorDistance = (Real) channelSampleRate / (Real) m_settings.m_sampleRate;
m_interpolatorDistanceRemain = m_interpolatorDistance;
}
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
}
void HeatMapSink::applySettings(const HeatMapSettings& settings, bool force)
{
qDebug() << "HeatMapSink::applySettings:"
<< " sampleRate: " << settings.m_sampleRate
<< " averagePeriodUS: " << settings.m_averagePeriodUS
<< " pulseThreshold: " << settings.m_pulseThreshold
<< " force: " << force;
if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth)
|| (settings.m_averagePeriodUS != m_settings.m_averagePeriodUS)
|| (settings.m_sampleRate != m_settings.m_sampleRate)
|| force)
{
m_interpolator.create(16, m_channelSampleRate, settings.m_rfBandwidth / 2.2);
m_interpolatorDistance = (Real) m_channelSampleRate / (Real) settings.m_sampleRate;
m_interpolatorDistanceRemain = m_interpolatorDistance;
}
if ((settings.m_averagePeriodUS != m_settings.m_averagePeriodUS)
|| (settings.m_sampleRate != m_settings.m_sampleRate)
|| force)
{
m_averageCnt = (int)((settings.m_averagePeriodUS * (qint64)settings.m_sampleRate / 1e6));
// For low sample rates, we want a small buffer, so scope update isn't too slow
if (settings.m_sampleRate < 100) {
m_sampleBufferSize = 1;
} else if (settings.m_sampleRate <= 100) {
m_sampleBufferSize = 10;
} else if (settings.m_sampleRate <= 10000) {
m_sampleBufferSize = 100;
} else {
m_sampleBufferSize = 1000;
}
qDebug() << "m_averageCnt" << m_averageCnt;
qDebug() << "m_sampleBufferSize" << m_sampleBufferSize;
m_sampleBuffer.resize(m_sampleBufferSize);
if (m_sampleBufferIndex >= m_sampleBufferSize) {
m_sampleBufferIndex = 0;
}
}
if ((settings.m_pulseThreshold != m_settings.m_pulseThreshold) || force)
{
m_pulseThresholdLinear = std::pow(10.0, settings.m_pulseThreshold / 20.0);
qDebug() << "m_pulseThresholdLinear" << m_pulseThresholdLinear;
}
m_settings = settings;
}