1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-21 23:55:13 -05:00
sdrangel/devices/usrp/deviceusrpparam.cpp
2024-07-10 23:06:38 +02:00

162 lines
7.0 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2020, 2022-2023 Jon Beniston, M7RCE <jon@beniston.com> //
// Copyright (C) 2020 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QDebug>
#include "deviceusrpparam.h"
bool DeviceUSRPParams::open(const QString &deviceStr, bool channelNumOnly)
{
qDebug("DeviceUSRPParams::open: %s", qPrintable(deviceStr));
try
{
std::string device_args(qPrintable(deviceStr));
// For USB
// The recv_frame_size must be a multiple of 8 bytes and not a multiple of 1024 bytes.
// recv_frame_size max is 16360.
//m_dev = uhd::usrp::multi_usrp::make(device_args + ",recv_frame_size=16392");
m_dev = uhd::usrp::multi_usrp::make(device_args);
// Save information about what the radio supports
m_nbRxChannels = m_dev->get_rx_num_channels();
m_nbTxChannels = m_dev->get_tx_num_channels();
qDebug() << "DeviceUSRPParams::open: m_nbRxChannels: " << m_nbRxChannels << " m_nbTxChannels: " << m_nbTxChannels;
// Speed up program initialisation, by not getting all properties
// If we could find out number of channels without ::make ing the device
// that would be even better
if (!channelNumOnly)
{
if (m_nbRxChannels > 0)
{
m_lpfRangeRx = m_dev->get_rx_bandwidth_range();
m_loRangeRx = m_dev->get_fe_rx_freq_range();
}
if (m_nbTxChannels > 0)
{
m_lpfRangeTx = m_dev->get_tx_bandwidth_range();
m_loRangeTx = m_dev->get_fe_tx_freq_range();
}
// For some devices (B210), rx/tx_rates vary with master_clock_rate
// which can be set automatically by UHD. For other devices,
// master_clock_rate must be set manually (currently as a device arg)
// Note master_clock_rate is rate between FPGA and RFIC
// tx/rx_rate is rate between PC and FPGA
uhd::meta_range_t clockRange = m_dev->get_master_clock_rate_range();
uhd::property_tree::sptr properties = m_dev->get_device()->get_tree();
if ((clockRange.start() == clockRange.stop()) || !properties->exists("/mboards/0/auto_tick_rate"))
{
if (m_nbRxChannels > 0) {
m_srRangeRx = m_dev->get_rx_rates();
}
if (m_nbTxChannels > 0) {
m_srRangeTx = m_dev->get_tx_rates();
}
}
else if (deviceStr.contains("product=B210"))
{
// Auto-calculation below can be slow, so use hardcoded values for B210
m_srRangeRx = uhd::meta_range_t(1e5, 61.444e6);
m_srRangeTx = uhd::meta_range_t(1e5, 61.444e6);
}
else
{
// Find max and min sample rate, for max and min master clock rates
m_dev->set_master_clock_rate(clockRange.start());
uhd::meta_range_t rxLow;
uhd::meta_range_t txLow;
if (m_nbRxChannels > 0) {
rxLow = m_dev->get_rx_rates();
}
if (m_nbTxChannels > 0) {
txLow = m_dev->get_tx_rates();
}
m_dev->set_master_clock_rate(clockRange.stop());
uhd::meta_range_t rxHigh;
uhd::meta_range_t txHigh;
if (m_nbRxChannels > 0)
{
rxHigh = m_dev->get_rx_rates();
m_srRangeRx = uhd::meta_range_t(std::min(rxLow.start(), rxHigh.start()), std::max(rxLow.stop(), rxHigh.stop()));
}
if (m_nbTxChannels > 0)
{
txHigh = m_dev->get_tx_rates();
m_srRangeTx = uhd::meta_range_t(std::min(txLow.start(), txHigh.start()), std::max(txLow.stop(), txHigh.stop()));
}
// Need to restore automatic clock rate
if (properties->exists("/mboards/0/auto_tick_rate")) {
properties->access<bool>("/mboards/0/auto_tick_rate").set(true);
}
}
if (m_nbRxChannels > 0)
{
m_gainRangeRx = m_dev->get_rx_gain_range();
std::vector<std::string> rxAntennas = m_dev->get_rx_antennas();
m_rxAntennas.reserve(rxAntennas.size());
for(size_t i = 0, l = rxAntennas.size(); i < l; ++i) {
m_rxAntennas << QString::fromStdString(rxAntennas[i]);
}
std::vector<std::string> rxGainNames = m_dev->get_rx_gain_names();
m_rxGainNames.reserve(rxGainNames.size());
for(size_t i = 0, l = rxGainNames.size(); i < l; ++i) {
m_rxGainNames << QString::fromStdString(rxGainNames[i]);
}
}
if (m_nbTxChannels > 0)
{
m_gainRangeTx = m_dev->get_tx_gain_range();
std::vector<std::string> txAntennas = m_dev->get_tx_antennas();
m_txAntennas.reserve(txAntennas.size());
for(size_t i = 0, l = txAntennas.size(); i < l; ++i) {
m_txAntennas << QString::fromStdString(txAntennas[i]);
}
}
std::vector<std::string> clockSources = m_dev->get_clock_sources(0);
m_clockSources.reserve(clockSources.size());
for(size_t i = 0, l = clockSources.size(); i < l; ++i) {
m_clockSources << QString::fromStdString(clockSources[i]);
}
}
return true;
}
catch (const std::exception& e)
{
qDebug() << "DeviceUSRPParams::open: exception: " << e.what();
return false;
}
}
void DeviceUSRPParams::close()
{
m_dev = nullptr;
}