1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-03 07:21:14 -05:00
sdrangel/plugins/channelrx/chanalyzerng/chanalyzerng.h
2018-05-15 19:40:53 +02:00

298 lines
9.6 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef INCLUDE_CHANALYZERNG_H
#define INCLUDE_CHANALYZERNG_H
#include <QMutex>
#include <vector>
#include "dsp/basebandsamplesink.h"
#include "channel/channelsinkapi.h"
#include "dsp/interpolator.h"
#include "dsp/ncof.h"
#include "dsp/fftfilt.h"
#include "dsp/phaselockcomplex.h"
#include "audio/audiofifo.h"
#include "util/message.h"
#define ssbFftLen 1024
class DeviceSourceAPI;
class ThreadedBasebandSampleSink;
class DownChannelizer;
class ChannelAnalyzerNG : public BasebandSampleSink, public ChannelSinkAPI {
public:
class MsgConfigureChannelAnalyzer : public Message {
MESSAGE_CLASS_DECLARATION
public:
int getChannelSampleRate() const { return m_channelSampleRate; }
Real getBandwidth() const { return m_Bandwidth; }
Real getLoCutoff() const { return m_LowCutoff; }
int getSpanLog2() const { return m_spanLog2; }
bool getSSB() const { return m_ssb; }
bool getPLL() const { return m_pll; }
unsigned int getPLLPSKOrder() const { return m_pllPskOrder; }
static MsgConfigureChannelAnalyzer* create(
int channelSampleRate,
Real Bandwidth,
Real LowCutoff,
int spanLog2,
bool ssb,
bool pll,
unsigned int pllPskOrder)
{
return new MsgConfigureChannelAnalyzer(
channelSampleRate,
Bandwidth,
LowCutoff,
spanLog2,
ssb,
pll,
pllPskOrder);
}
private:
int m_channelSampleRate;
Real m_Bandwidth;
Real m_LowCutoff;
int m_spanLog2;
bool m_ssb;
bool m_pll;
unsigned int m_pllPskOrder;
MsgConfigureChannelAnalyzer(
int channelSampleRate,
Real Bandwidth,
Real LowCutoff,
int spanLog2,
bool ssb,
bool pll,
unsigned int pllPskOrder) :
Message(),
m_channelSampleRate(channelSampleRate),
m_Bandwidth(Bandwidth),
m_LowCutoff(LowCutoff),
m_spanLog2(spanLog2),
m_ssb(ssb),
m_pll(pll),
m_pllPskOrder(pllPskOrder)
{ }
};
class MsgConfigureChannelizer : public Message {
MESSAGE_CLASS_DECLARATION
public:
int getSampleRate() const { return m_sampleRate; }
int getCenterFrequency() const { return m_centerFrequency; }
static MsgConfigureChannelizer* create(int sampleRate, int centerFrequency)
{
return new MsgConfigureChannelizer(sampleRate, centerFrequency);
}
private:
int m_sampleRate;
int m_centerFrequency;
MsgConfigureChannelizer(int sampleRate, int centerFrequency) :
Message(),
m_sampleRate(sampleRate),
m_centerFrequency(centerFrequency)
{ }
};
class MsgReportChannelSampleRateChanged : public Message {
MESSAGE_CLASS_DECLARATION
public:
static MsgReportChannelSampleRateChanged* create()
{
return new MsgReportChannelSampleRateChanged();
}
private:
MsgReportChannelSampleRateChanged() :
Message()
{ }
};
ChannelAnalyzerNG(DeviceSourceAPI *deviceAPI);
virtual ~ChannelAnalyzerNG();
virtual void destroy() { delete this; }
void setSampleSink(BasebandSampleSink* sampleSink) { m_sampleSink = sampleSink; }
void configure(MessageQueue* messageQueue,
int channelSampleRate,
Real Bandwidth,
Real LowCutoff,
int spanLog2,
bool ssb,
bool pll,
unsigned int pllPskOrder);
DownChannelizer *getChannelizer() { return m_channelizer; }
int getInputSampleRate() const { return m_running.m_inputSampleRate; }
int getChannelSampleRate() const { return m_running.m_channelSampleRate; }
double getMagSq() const { return m_magsq; }
bool isPllLocked() const { return m_running.m_pll && m_pll.locked(); }
Real getPllFrequency() const { return m_pll.getFrequency(); }
Real getPllDeltaPhase() const { return m_pll.getDeltaPhi(); }
Real getPllPhase() const { return m_pll.getPhiHat(); }
virtual void feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool positiveOnly);
virtual void start();
virtual void stop();
virtual bool handleMessage(const Message& cmd);
virtual void getIdentifier(QString& id) { id = objectName(); }
virtual void getTitle(QString& title) { title = objectName(); }
virtual qint64 getCenterFrequency() const { return m_running.m_frequency; }
virtual QByteArray serialize() const { return QByteArray(); }
virtual bool deserialize(const QByteArray& data __attribute__((unused))) { return false; }
static const QString m_channelIdURI;
static const QString m_channelId;
private:
struct Config
{
int m_frequency;
int m_inputSampleRate;
int m_channelSampleRate;
Real m_Bandwidth;
Real m_LowCutoff;
int m_spanLog2;
bool m_ssb;
bool m_pll;
unsigned int m_pllPskOrder;
Config() :
m_frequency(0),
m_inputSampleRate(96000),
m_channelSampleRate(96000),
m_Bandwidth(5000),
m_LowCutoff(300),
m_spanLog2(3),
m_ssb(false),
m_pll(false),
m_pllPskOrder(1)
{}
};
Config m_config;
Config m_running;
DeviceSourceAPI *m_deviceAPI;
ThreadedBasebandSampleSink* m_threadedChannelizer;
DownChannelizer* m_channelizer;
int m_undersampleCount;
fftfilt::cmplx m_sum;
bool m_usb;
double m_magsq;
bool m_useInterpolator;
NCOF m_nco;
PhaseLockComplex m_pll;
Interpolator m_interpolator;
Real m_interpolatorDistance;
Real m_interpolatorDistanceRemain;
fftfilt* SSBFilter;
fftfilt* DSBFilter;
BasebandSampleSink* m_sampleSink;
SampleVector m_sampleBuffer;
QMutex m_settingsMutex;
void apply(bool force = false);
void processOneSample(Complex& c, fftfilt::cmplx *sideband)
{
int n_out;
int decim = 1<<m_running.m_spanLog2;
if (m_running.m_ssb)
{
n_out = SSBFilter->runSSB(c, &sideband, m_usb);
}
else
{
n_out = DSBFilter->runDSB(c, &sideband);
}
for (int i = 0; i < n_out; i++)
{
// Downsample by 2^(m_scaleLog2 - 1) for SSB band spectrum display
// smart decimation with bit gain using float arithmetic (23 bits significand)
m_sum += sideband[i];
if (!(m_undersampleCount++ & (decim - 1))) // counter LSB bit mask for decimation by 2^(m_scaleLog2 - 1)
{
m_sum /= decim;
Real re = m_sum.real() / SDR_RX_SCALED;
Real im = m_sum.imag() / SDR_RX_SCALED;
m_magsq = re*re + im*im;
if (m_running.m_pll)
{
m_pll.feed(re, im);
// Use -fPLL to mix (exchange PLL real and image in the complex multiplication)
// Real mixI = m_sum.real() * m_pll.getImag() - m_sum.imag() * m_pll.getReal();
// Real mixQ = m_sum.real() * m_pll.getReal() + m_sum.imag() * m_pll.getImag();
Real mixI = m_pll.getReal() * SDR_RX_SCALED;
Real mixQ = m_pll.getImag() * SDR_RX_SCALED;
if (m_running.m_ssb & !m_usb)
{ // invert spectrum for LSB
m_sampleBuffer.push_back(Sample(mixQ, mixI));
}
else
{
m_sampleBuffer.push_back(Sample(mixI, mixQ));
}
}
else
{
if (m_running.m_ssb & !m_usb)
{ // invert spectrum for LSB
m_sampleBuffer.push_back(Sample(m_sum.imag(), m_sum.real()));
}
else
{
m_sampleBuffer.push_back(Sample(m_sum.real(), m_sum.imag()));
}
}
m_sum = 0;
}
}
}
};
#endif // INCLUDE_CHANALYZERNG_H