1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-04 16:01:14 -05:00
sdrangel/sdrbase/dsp/inthalfbandfilterst.h

579 lines
17 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016, 2018-2019 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// //
// Integer half-band FIR based interpolator and decimator //
// This is the even/odd and I/Q stride with double buffering variant //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef INCLUDE_INTHALFBANDFILTER_ST_H
#define INCLUDE_INTHALFBANDFILTER_ST_H
#include <stdint.h>
#include "dsp/dsptypes.h"
#include "dsp/hbfiltertraits.h"
#include "dsp/inthalfbandfiltersti.h"
#include "export.h"
template<uint32_t HBFilterOrder>
class SDRANGEL_API IntHalfbandFilterST {
public:
IntHalfbandFilterST();
// downsample by 2, return center part of original spectrum
bool workDecimateCenter(Sample* sample)
{
// insert sample into ring-buffer
storeSample((FixReal) sample->real(), (FixReal) sample->imag());
switch(m_state)
{
case 0:
// advance write-pointer
advancePointer();
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
default:
// save result
doFIR(sample);
// advance write-pointer
advancePointer();
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
// upsample by 2, return center part of original spectrum - double buffer variant
bool workInterpolateCenter(Sample* sampleIn, Sample *SampleOut)
{
switch(m_state)
{
case 0:
// insert sample into ring-buffer
storeSample(0, 0);
// save result
doFIR(SampleOut);
// advance write-pointer
advancePointer();
// next state
m_state = 1;
// tell caller we didn't consume the sample
return false;
default:
// insert sample into ring-buffer
storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag());
// save result
doFIR(SampleOut);
// advance write-pointer
advancePointer();
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
}
}
bool workDecimateCenter(int32_t *x, int32_t *y)
{
// insert sample into ring-buffer
storeSample(*x, *y);
switch(m_state)
{
case 0:
// advance write-pointer
advancePointer();
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
default:
// save result
doFIR(x, y);
// advance write-pointer
advancePointer();
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
// downsample by 2, return lower half of original spectrum
bool workDecimateLowerHalf(Sample* sample)
{
switch(m_state)
{
case 0:
// insert sample into ring-buffer
storeSample((FixReal) -sample->imag(), (FixReal) sample->real());
// advance write-pointer
advancePointer();
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
case 1:
// insert sample into ring-buffer
storeSample((FixReal) -sample->real(), (FixReal) -sample->imag());
// save result
doFIR(sample);
// advance write-pointer
advancePointer();
// next state
m_state = 2;
// tell caller we have a new sample
return true;
case 2:
// insert sample into ring-buffer
storeSample((FixReal) sample->imag(), (FixReal) -sample->real());
// advance write-pointer
advancePointer();
// next state
m_state = 3;
// tell caller we don't have a new sample
return false;
default:
// insert sample into ring-buffer
storeSample((FixReal) sample->real(), (FixReal) sample->imag());
// save result
doFIR(sample);
// advance write-pointer
advancePointer();
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
// upsample by 2, from lower half of original spectrum - double buffer variant
bool workInterpolateLowerHalf(Sample* sampleIn, Sample *sampleOut)
{
Sample s;
switch(m_state)
{
case 0:
// insert sample into ring-buffer
storeSample(0, 0);
// save result
doFIR(&s);
sampleOut->setReal(s.imag());
sampleOut->setImag(-s.real());
// advance write-pointer
advancePointer();
// next state
m_state = 1;
// tell caller we didn't consume the sample
return false;
case 1:
// insert sample into ring-buffer
storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag());
// save result
doFIR(&s);
sampleOut->setReal(-s.real());
sampleOut->setImag(-s.imag());
// advance write-pointer
advancePointer();
// next state
m_state = 2;
// tell caller we consumed the sample
return true;
case 2:
// insert sample into ring-buffer
storeSample(0, 0);
// save result
doFIR(&s);
sampleOut->setReal(-s.imag());
sampleOut->setImag(s.real());
// advance write-pointer
advancePointer();
// next state
m_state = 3;
// tell caller we didn't consume the sample
return false;
default:
// insert sample into ring-buffer
storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag());
// save result
doFIR(&s);
sampleOut->setReal(s.real());
sampleOut->setImag(s.imag());
// advance write-pointer
advancePointer();
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
}
}
// downsample by 2, return upper half of original spectrum
bool workDecimateUpperHalf(Sample* sample)
{
switch(m_state)
{
case 0:
// insert sample into ring-buffer
storeSample((FixReal) sample->imag(), (FixReal) -sample->real());
// advance write-pointer
advancePointer();
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
case 1:
// insert sample into ring-buffer
storeSample((FixReal) -sample->real(), (FixReal) -sample->imag());
// save result
doFIR(sample);
// advance write-pointer
advancePointer();
// next state
m_state = 2;
// tell caller we have a new sample
return true;
case 2:
// insert sample into ring-buffer
storeSample((FixReal) -sample->imag(), (FixReal) sample->real());
// advance write-pointer
advancePointer();
// next state
m_state = 3;
// tell caller we don't have a new sample
return false;
default:
// insert sample into ring-buffer
storeSample((FixReal) sample->real(), (FixReal) sample->imag());
// save result
doFIR(sample);
// advance write-pointer
advancePointer();
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
// upsample by 2, move original spectrum to upper half - double buffer variant
bool workInterpolateUpperHalf(Sample* sampleIn, Sample *sampleOut)
{
Sample s;
switch(m_state)
{
case 0:
// insert sample into ring-buffer
storeSample(0, 0);
// save result
doFIR(&s);
sampleOut->setReal(-s.imag());
sampleOut->setImag(s.real());
// advance write-pointer
advancePointer();
// next state
m_state = 1;
// tell caller we didn't consume the sample
return false;
case 1:
// insert sample into ring-buffer
storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag());
// save result
doFIR(&s);
sampleOut->setReal(-s.real());
sampleOut->setImag(-s.imag());
// advance write-pointer
advancePointer();
// next state
m_state = 2;
// tell caller we consumed the sample
return true;
case 2:
// insert sample into ring-buffer
storeSample(0, 0);
// save result
doFIR(&s);
sampleOut->setReal(s.imag());
sampleOut->setImag(-s.real());
// advance write-pointer
advancePointer();
// next state
m_state = 3;
// tell caller we didn't consume the sample
return false;
default:
// insert sample into ring-buffer
storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag());
// save result
doFIR(&s);
sampleOut->setReal(s.real());
sampleOut->setImag(s.imag());
// advance write-pointer
advancePointer();
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
}
}
void myDecimate(const Sample* sample1, Sample* sample2)
{
storeSample((FixReal) sample1->real(), (FixReal) sample1->imag());
advancePointer();
storeSample((FixReal) sample2->real(), (FixReal) sample2->imag());
doFIR(sample2);
advancePointer();
}
void myDecimate(int32_t x1, int32_t y1, int32_t *x2, int32_t *y2)
{
storeSample(x1, y1);
advancePointer();
storeSample(*x2, *y2);
doFIR(x2, y2);
advancePointer();
}
void myInterpolate(Sample* sample1, Sample* sample2)
{
storeSample((FixReal) sample1->real(), (FixReal) sample1->imag());
doFIR(sample1);
advancePointer();
storeSample(0, 0);
doFIR(sample2);
advancePointer();
}
void myInterpolate(int32_t *x1, int32_t *y1, int32_t *x2, int32_t *y2)
{
storeSample(*x1, *y1);
doFIR(x1, y1);
advancePointer();
storeSample(0, 0);
doFIR(x2, y2);
advancePointer();
}
protected:
int32_t m_samplesDB[2*HBFilterOrder][2]; // double buffer technique with even/odd amnd I/Q stride
int32_t m_samplesAligned[HBFilterOrder][2] __attribute__ ((aligned (16)));
int m_ptr;
int m_size;
int m_state;
int32_t m_iEvenAcc;
int32_t m_qEvenAcc;
int32_t m_iOddAcc;
int32_t m_qOddAcc;
void storeSample(const FixReal& sampleI, const FixReal& sampleQ)
{
m_samplesDB[m_ptr][0] = sampleI;
m_samplesDB[m_ptr][1] = sampleQ;
m_samplesDB[m_ptr + m_size][0] = sampleI;
m_samplesDB[m_ptr + m_size][1] = sampleQ;
}
void storeSample(int32_t x, int32_t y)
{
m_samplesDB[m_ptr][0] = x;
m_samplesDB[m_ptr][1] = y;
m_samplesDB[m_ptr + m_size][0] = x;
m_samplesDB[m_ptr + m_size][1] = y;
}
void advancePointer()
{
m_ptr = m_ptr + 1 < m_size ? m_ptr + 1: 0;
}
void doFIR(Sample* sample)
{
// calculate on odd values
if ((m_ptr % 2) == 1)
{
m_iEvenAcc = 0;
m_qEvenAcc = 0;
m_iOddAcc = 0;
m_qOddAcc = 0;
#ifdef USE_SSE4_1
// memcpy((void *) m_samplesAligned, (const void *) &(m_samplesDB[ m_ptr + 1][0]), HBFilterOrder*2*sizeof(int32_t));
IntHalfbandFilterSTIntrinsics<HBFilterOrder>::workNA(
m_ptr + 1,
m_samplesDB,
m_iEvenAcc,
m_qEvenAcc,
m_iOddAcc,
m_qOddAcc);
#else
int a = m_ptr + m_size; // tip pointer - odd
int b = m_ptr + 1; // tail pointer - aven
for (int i = 0; i < HBFIRFilterTraits<HBFilterOrder>::hbOrder / 4; i++)
{
m_iEvenAcc += (m_samplesDB[a-1][0] + m_samplesDB[b][0]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
m_iOddAcc += (m_samplesDB[a][0] + m_samplesDB[b+1][0]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
m_qEvenAcc += (m_samplesDB[a-1][1] + m_samplesDB[b][1]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
m_qOddAcc += (m_samplesDB[a][1] + m_samplesDB[b+1][1]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
a -= 2;
b += 2;
}
#endif
m_iEvenAcc += ((int32_t)m_samplesDB[m_ptr + m_size/2][0]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
m_qEvenAcc += ((int32_t)m_samplesDB[m_ptr + m_size/2][1]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
m_iOddAcc += ((int32_t)m_samplesDB[m_ptr + m_size/2 + 1][0]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
m_qOddAcc += ((int32_t)m_samplesDB[m_ptr + m_size/2 + 1][1]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
sample->setReal(m_iEvenAcc >> HBFIRFilterTraits<HBFilterOrder>::hbShift -1);
sample->setImag(m_qEvenAcc >> HBFIRFilterTraits<HBFilterOrder>::hbShift -1);
}
else
{
sample->setReal(m_iOddAcc >> HBFIRFilterTraits<HBFilterOrder>::hbShift -1);
sample->setImag(m_qOddAcc >> HBFIRFilterTraits<HBFilterOrder>::hbShift -1);
}
}
void doFIR(int32_t *x, int32_t *y)
{
// calculate on odd values
if ((m_ptr % 2) == 1)
{
m_iEvenAcc = 0;
m_qEvenAcc = 0;
m_iOddAcc = 0;
m_qOddAcc = 0;
#ifdef USE_SSE4_1
// memcpy((void *) m_samplesAligned, (const void *) &(m_samplesDB[ m_ptr + 1][0]), HBFilterOrder*2*sizeof(int32_t));
IntHalfbandFilterSTIntrinsics<HBFilterOrder>::workNA(
m_ptr + 1,
m_samplesDB,
m_iEvenAcc,
m_qEvenAcc,
m_iOddAcc,
m_qOddAcc);
#else
int a = m_ptr + m_size; // tip pointer - odd
int b = m_ptr + 1; // tail pointer - aven
for (int i = 0; i < HBFIRFilterTraits<HBFilterOrder>::hbOrder / 4; i++)
{
m_iEvenAcc += (m_samplesDB[a-1][0] + m_samplesDB[b][0]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
m_iOddAcc += (m_samplesDB[a][0] + m_samplesDB[b+1][0]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
m_qEvenAcc += (m_samplesDB[a-1][1] + m_samplesDB[b][1]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
m_qOddAcc += (m_samplesDB[a][1] + m_samplesDB[b+1][1]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
a -= 2;
b += 2;
}
#endif
m_iEvenAcc += ((int32_t)m_samplesDB[m_ptr + m_size/2][0]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
m_qEvenAcc += ((int32_t)m_samplesDB[m_ptr + m_size/2][1]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
m_iOddAcc += ((int32_t)m_samplesDB[m_ptr + m_size/2 + 1][0]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
m_qOddAcc += ((int32_t)m_samplesDB[m_ptr + m_size/2 + 1][1]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
*x = m_iEvenAcc >> HBFIRFilterTraits<HBFilterOrder>::hbShift -1;
*y = m_qEvenAcc >> HBFIRFilterTraits<HBFilterOrder>::hbShift -1;
}
else
{
*x = m_iOddAcc >> HBFIRFilterTraits<HBFilterOrder>::hbShift -1;
*y = m_qOddAcc >> HBFIRFilterTraits<HBFilterOrder>::hbShift -1;
}
}
};
template<uint32_t HBFilterOrder>
IntHalfbandFilterST<HBFilterOrder>::IntHalfbandFilterST()
{
m_size = HBFIRFilterTraits<HBFilterOrder>::hbOrder;
for (int i = 0; i < m_size; i++)
{
m_samplesDB[i][0] = 0;
m_samplesDB[i][1] = 0;
}
m_ptr = 0;
m_state = 0;
m_iEvenAcc = 0;
m_qEvenAcc = 0;
m_iOddAcc = 0;
m_qOddAcc = 0;
}
#endif // INCLUDE_INTHALFBANDFILTER_DB_H