mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-30 20:40:20 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			578 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			578 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /**
 | |
|     @file Connection_uLimeSDRing.cpp
 | |
|     @author Lime Microsystems
 | |
|     @brief Implementation of uLimeSDR board connection (streaming API)
 | |
| */
 | |
| 
 | |
| #include "Connection_uLimeSDR.h"
 | |
| #include "fifo.h"
 | |
| #include <LMS7002M.h>
 | |
| #include <iostream>
 | |
| #include <thread>
 | |
| #include <chrono>
 | |
| #include <algorithm>
 | |
| #include <complex>
 | |
| #include <ciso646>
 | |
| #include <vector>
 | |
| #include <FPGA_common.h>
 | |
| #include "ErrorReporting.h"
 | |
| 
 | |
| using namespace lime;
 | |
| using namespace std;
 | |
| 
 | |
| #define __unix__
 | |
| 
 | |
| /** @brief Configures FPGA PLLs to LimeLight interface frequency
 | |
| */
 | |
| int Connection_uLimeSDR::UpdateExternalDataRate(const size_t channel, const double txRate, const double rxRate, const double txPhase, const double rxPhase)
 | |
| {
 | |
|     const float txInterfaceClk = 2 * txRate;
 | |
|     const float rxInterfaceClk = 2 * rxRate;
 | |
|     int status = 0;
 | |
| 
 | |
|     mExpectedSampleRate = rxRate;
 | |
| 
 | |
|     lime::fpga::FPGA_PLL_clock clocks[4];
 | |
| 
 | |
|     clocks[0].bypass = false;
 | |
|     clocks[0].index = 0;
 | |
|     clocks[0].outFrequency = txInterfaceClk;
 | |
|     clocks[0].phaseShift_deg = 0;
 | |
|     clocks[0].findPhase = false;
 | |
|     clocks[1].bypass = false;
 | |
|     clocks[1].index = 1;
 | |
|     clocks[1].outFrequency = txInterfaceClk;
 | |
|     clocks[1].findPhase = false;
 | |
|     clocks[1].phaseShift_deg = txPhase;
 | |
|     clocks[2].bypass = false;
 | |
|     clocks[2].index = 2;
 | |
|     clocks[2].outFrequency = rxInterfaceClk;
 | |
|     clocks[2].phaseShift_deg = 0;
 | |
|     clocks[2].findPhase = false;
 | |
|     clocks[3].bypass = false;
 | |
|     clocks[3].index = 3;
 | |
|     clocks[3].outFrequency = rxInterfaceClk;
 | |
|     clocks[3].findPhase = false;
 | |
|     clocks[3].phaseShift_deg = rxPhase;
 | |
| 
 | |
|     status = lime::fpga::SetPllFrequency(this, 0, rxInterfaceClk, clocks, 4);
 | |
| 
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| /** @brief Configures FPGA PLLs to LimeLight interface frequency
 | |
| */
 | |
| int Connection_uLimeSDR::UpdateExternalDataRate(const size_t channel, const double txRate_Hz, const double rxRate_Hz)
 | |
| {
 | |
|     const float txInterfaceClk = 2 * txRate_Hz;
 | |
|     const float rxInterfaceClk = 2 * rxRate_Hz;
 | |
|     int status = 0;
 | |
|     uint32_t reg20;
 | |
|     const double rxPhC1[] = { 91.08, 89.46 };
 | |
|     const double rxPhC2[] = { -1 / 6e6, 1.24e-6 };
 | |
|     const double txPhC1[] = { 89.75, 89.61 };
 | |
|     const double txPhC2[] = { -3.0e-7, 2.71e-7 };
 | |
| 
 | |
|     const std::vector<uint32_t> spiAddr = { 0x0021, 0x0022, 0x0023, 0x0024,
 | |
|         0x0027, 0x002A, 0x0400, 0x040C,
 | |
|         0x040B, 0x0400, 0x040B, 0x0400 };
 | |
|     const int bakRegCnt = spiAddr.size() - 4;
 | |
|     auto info = GetDeviceInfo();
 | |
|     const int addrLMS7002M = info.addrsLMS7002M.at(0);
 | |
|     bool phaseSearch = false;
 | |
|     //if (this->chipVersion == 0x3841) //0x3840 LMS7002Mr2, 0x3841 LMS7002Mr3
 | |
|     /*if (rxInterfaceClk >= 5e6 || txInterfaceClk >= 5e6)
 | |
|         phaseSearch = true;*/
 | |
|     mExpectedSampleRate = rxRate_Hz;
 | |
|     std::vector<uint32_t> dataWr;
 | |
|     std::vector<uint32_t> dataRd;
 | |
| 
 | |
|     if (phaseSearch)
 | |
|     {
 | |
|         dataWr.resize(spiAddr.size());
 | |
|         dataRd.resize(spiAddr.size());
 | |
|         //backup registers
 | |
|         dataWr[0] = (uint32_t(0x0020) << 16);
 | |
|         TransactSPI(addrLMS7002M, dataWr.data(), ®20, 1);
 | |
| 
 | |
|         dataWr[0] = (1 << 31) | (uint32_t(0x0020) << 16) | 0xFFFD; //msbit 1=SPI write
 | |
|         TransactSPI(addrLMS7002M, dataWr.data(), nullptr, 1);
 | |
| 
 | |
|         for (int i = 0; i < bakRegCnt; ++i)
 | |
|             dataWr[i] = (spiAddr[i] << 16);
 | |
|         TransactSPI(addrLMS7002M, dataWr.data(), dataRd.data(), bakRegCnt);
 | |
|     }
 | |
| 
 | |
|     if ((txInterfaceClk >= 5e6) && (rxInterfaceClk >= 5e6))
 | |
|     {
 | |
|         lime::fpga::FPGA_PLL_clock clocks[4];
 | |
| 
 | |
|         clocks[0].bypass = false;
 | |
|         clocks[0].index = 0;
 | |
|         clocks[0].outFrequency = txInterfaceClk;
 | |
|         clocks[0].phaseShift_deg = 0;
 | |
|         clocks[0].findPhase = false;
 | |
|         clocks[1].bypass = false;
 | |
|         clocks[1].index = 1;
 | |
|         clocks[1].outFrequency = txInterfaceClk;
 | |
|         clocks[1].findPhase = false;
 | |
|         if (this->chipVersion == 0x3841)
 | |
|             clocks[1].phaseShift_deg = txPhC1[1] + txPhC2[1] * txInterfaceClk;
 | |
|         else
 | |
|             clocks[1].phaseShift_deg = txPhC1[0] + txPhC2[0] * txInterfaceClk;
 | |
|         clocks[2].bypass = false;
 | |
|         clocks[2].index = 2;
 | |
|         clocks[2].outFrequency = rxInterfaceClk;
 | |
|         clocks[2].phaseShift_deg = 0;
 | |
|         clocks[2].findPhase = false;
 | |
|         clocks[3].bypass = false;
 | |
|         clocks[3].index = 3;
 | |
|         clocks[3].outFrequency = rxInterfaceClk;
 | |
|         clocks[3].findPhase = false;
 | |
|         if (this->chipVersion == 0x3841)
 | |
|             clocks[3].phaseShift_deg = rxPhC1[1] + rxPhC2[1] * rxInterfaceClk;
 | |
|         else
 | |
|             clocks[3].phaseShift_deg = rxPhC1[0] + rxPhC2[0] * rxInterfaceClk;
 | |
| 
 | |
|         if (phaseSearch)
 | |
|         {
 | |
|             {
 | |
| #ifndef NDEBUG
 | |
|                 printf("RX phase config:\n");
 | |
| #endif
 | |
|                 clocks[3].findPhase = true;
 | |
|                 const std::vector<uint32_t> spiData = { 0x0E9F, 0x07FF, 0x5550, 0xE4E4,
 | |
|                     0xE4E4, 0x0086, 0x028D, 0x00FF, 0x5555, 0x02CD, 0xAAAA, 0x02ED };
 | |
|                 //Load test config
 | |
|                 const int setRegCnt = spiData.size();
 | |
|                 for (int i = 0; i < setRegCnt; ++i)
 | |
|                     dataWr[i] = (1 << 31) | (uint32_t(spiAddr[i]) << 16) | spiData[i]; //msbit 1=SPI write
 | |
|                 TransactSPI(addrLMS7002M, dataWr.data(), nullptr, setRegCnt);
 | |
|                 status = lime::fpga::SetPllFrequency(this, 0, rxInterfaceClk, clocks, 4);
 | |
|             }
 | |
|             {
 | |
| #ifndef NDEBUG
 | |
|                 printf("TX phase config:\n");
 | |
| #endif
 | |
|                 clocks[3].findPhase = false;
 | |
|                 const std::vector<uint32_t> spiData = { 0x0E9F, 0x07FF, 0x5550, 0xE4E4, 0xE4E4, 0x0484 };
 | |
|                 WriteRegister(0x000A, 0x0000);
 | |
|                 //Load test config
 | |
|                 const int setRegCnt = spiData.size();
 | |
|                 for (int i = 0; i < setRegCnt; ++i)
 | |
|                     dataWr[i] = (1 << 31) | (uint32_t(spiAddr[i]) << 16) | spiData[i]; //msbit 1=SPI write
 | |
|                 TransactSPI(addrLMS7002M, dataWr.data(), nullptr, setRegCnt);
 | |
|                 clocks[1].findPhase = true;
 | |
|                 WriteRegister(0x000A, 0x0200);
 | |
| 
 | |
|             }
 | |
|         }
 | |
|         status = lime::fpga::SetPllFrequency(this, 0, rxInterfaceClk, clocks, 4);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         status = lime::fpga::SetDirectClocking(this, 0, rxInterfaceClk, 90);
 | |
|         if (status == 0)
 | |
|             status = lime::fpga::SetDirectClocking(this, 1, rxInterfaceClk, 90);
 | |
|     }
 | |
| 
 | |
|     if (phaseSearch)
 | |
|     {
 | |
|         //Restore registers
 | |
|         for (int i = 0; i < bakRegCnt; ++i)
 | |
|             dataWr[i] = (1 << 31) | (uint32_t(spiAddr[i]) << 16) | dataRd[i]; //msbit 1=SPI write
 | |
|         TransactSPI(addrLMS7002M, dataWr.data(), nullptr, bakRegCnt);
 | |
|         dataWr[0] = (1 << 31) | (uint32_t(0x0020) << 16) | reg20; //msbit 1=SPI write
 | |
|         TransactSPI(addrLMS7002M, dataWr.data(), nullptr, 1);
 | |
|         WriteRegister(0x000A, 0);
 | |
|     }
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| 
 | |
| int Connection_uLimeSDR::ReadRawStreamData(char* buffer, unsigned length, int epIndex, int timeout_ms)
 | |
| {
 | |
|     int totalBytesReceived = 0;
 | |
|     fpga::StopStreaming(this, epIndex);
 | |
| 
 | |
|     //ResetStreamBuffers();
 | |
|     WriteRegister(0x0008, 0x0100 | 0x2);
 | |
|     WriteRegister(0x0007, 1);
 | |
| 
 | |
|     fpga::StartStreaming(this, epIndex);
 | |
| 
 | |
|     int handle = BeginDataReading(buffer, length);
 | |
|     if (WaitForReading(handle, timeout_ms))
 | |
|         totalBytesReceived = FinishDataReading(buffer, length, handle);
 | |
| 
 | |
|     AbortReading();
 | |
|     fpga::StopStreaming(this, epIndex);
 | |
| 
 | |
|     return totalBytesReceived;
 | |
| }
 | |
| 
 | |
| int Connection_uLimeSDR::ResetStreamBuffers()
 | |
| {
 | |
|     rxSize = 0;
 | |
|     txSize = 0;
 | |
| #ifndef __unix__
 | |
|     if (FT_AbortPipe(mFTHandle, mStreamRdEndPtAddr)!=FT_OK)
 | |
|         return -1;
 | |
|     if (FT_AbortPipe(mFTHandle, mStreamWrEndPtAddr)!=FT_OK)
 | |
|         return -1;
 | |
|     if (FT_FlushPipe(mFTHandle, mStreamRdEndPtAddr)!=FT_OK)
 | |
|         return -1;
 | |
| #else
 | |
|     return FT_FlushPipe(mStreamRdEndPtAddr);
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /** @brief Function dedicated for receiving data samples from board
 | |
|     @param rxFIFO FIFO to store received data
 | |
|     @param terminate periodically pooled flag to terminate thread
 | |
|     @param dataRate_Bps (optional) if not NULL periodically returns data rate in bytes per second
 | |
| */
 | |
| void Connection_uLimeSDR::ReceivePacketsLoop(Connection_uLimeSDR::Streamer* stream)
 | |
| {
 | |
|     //at this point FPGA has to be already configured to output samples
 | |
|     const uint8_t chCount = stream->mRxStreams.size();
 | |
|     const auto link =stream->mRxStreams[0]->config.linkFormat;
 | |
|     const uint32_t samplesInPacket = (link == StreamConfig::STREAM_12_BIT_COMPRESSED ? 1360 : 1020)/chCount;
 | |
|     const int chipID = stream->mChipID;
 | |
| 
 | |
|     double latency=0;
 | |
|     for (int i = 0; i < chCount; i++)
 | |
|     {
 | |
|         latency += stream->mRxStreams[i]->config.performanceLatency/chCount;
 | |
|     }
 | |
|     const unsigned tmp_cnt = (latency * 4)+0.5;
 | |
| 
 | |
|     const uint8_t packetsToBatch = (1<<tmp_cnt);
 | |
|     const uint32_t bufferSize = packetsToBatch*sizeof(FPGA_DataPacket);
 | |
|     const uint8_t buffersCount = 16; // must be power of 2
 | |
|     vector<int> handles(buffersCount, 0);
 | |
|     vector<char>buffers(buffersCount*bufferSize, 0);
 | |
|     vector<StreamChannel::Frame> chFrames;
 | |
|     try
 | |
|     {
 | |
|         chFrames.resize(chCount);
 | |
|     }
 | |
|     catch (const std::bad_alloc &ex)
 | |
|     {
 | |
|         ReportError("Error allocating Rx buffers, not enough memory");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     uint8_t activeTransfers = 0;
 | |
|     for (int i = 0; i<buffersCount; ++i)
 | |
|     {
 | |
|         handles[i] = this->BeginDataReading(&buffers[i*bufferSize], bufferSize);
 | |
|         ++activeTransfers;
 | |
|     }
 | |
| 
 | |
|     int bi = 0;
 | |
|     unsigned long totalBytesReceived = 0; //for data rate calculation
 | |
|     int m_bufferFailures = 0;
 | |
|     int32_t droppedSamples = 0;
 | |
|     int32_t packetLoss = 0;
 | |
| 
 | |
|     vector<uint32_t> samplesCollected(chCount, 0);
 | |
|     vector<uint32_t> samplesReceived(chCount, 0);
 | |
| 
 | |
|     auto t1 = chrono::high_resolution_clock::now();
 | |
|     auto t2 = chrono::high_resolution_clock::now();
 | |
| 
 | |
|     std::mutex txFlagsLock;
 | |
|     condition_variable resetTxFlags;
 | |
|     //worker thread for reseting late Tx packet flags
 | |
|     std::thread txReset([](ILimeSDRStreaming* port,
 | |
|                         atomic<bool> *terminate,
 | |
|                         mutex *spiLock,
 | |
|                         condition_variable *doWork)
 | |
|     {
 | |
|         uint32_t reg9;
 | |
|         port->ReadRegister(0x0009, reg9);
 | |
|         const uint32_t addr[] = {0x0009, 0x0009};
 | |
|         const uint32_t data[] = {reg9 | (1 << 1), reg9 & ~(1 << 1)};
 | |
|         while (not terminate->load())
 | |
|         {
 | |
|             std::unique_lock<std::mutex> lck(*spiLock);
 | |
|             doWork->wait(lck);
 | |
|             port->WriteRegisters(addr, data, 2);
 | |
|         }
 | |
|     }, this, &stream->terminateRx, &txFlagsLock, &resetTxFlags);
 | |
| 
 | |
|     int resetFlagsDelay = 128;
 | |
|     uint64_t prevTs = 0;
 | |
|     while (stream->terminateRx.load() == false)
 | |
|     {
 | |
|         if(stream->generateData.load())
 | |
|         {
 | |
|             if(activeTransfers == 0) //stop FPGA when last transfer completes
 | |
|                 fpga::StopStreaming(this, chipID);
 | |
|             stream->safeToConfigInterface.notify_all(); //notify that it's safe to change chip config
 | |
|             const int batchSize = (this->mExpectedSampleRate/chFrames[0].samplesCount)/10;
 | |
|             IStreamChannel::Metadata meta;
 | |
|             for(int i=0; i<batchSize; ++i)
 | |
|             {
 | |
|                 for(int ch=0; ch<chCount; ++ch)
 | |
|                 {
 | |
|                     meta.timestamp = chFrames[ch].timestamp;
 | |
|                     for(int j=0; j<chFrames[ch].samplesCount; ++j)
 | |
|                     {
 | |
|                         chFrames[ch].samples[j].i = 0;
 | |
|                         chFrames[ch].samples[j].q = 0;
 | |
|                     }
 | |
|                     uint32_t samplesPushed = stream->mRxStreams[ch]->Write((const void*)chFrames[ch].samples, chFrames[ch].samplesCount, &meta);
 | |
|                     samplesReceived[ch] += chFrames[ch].samplesCount;
 | |
|                     if(samplesPushed != chFrames[ch].samplesCount)
 | |
|                         printf("Rx samples pushed %i/%i\n", samplesPushed, chFrames[ch].samplesCount);
 | |
|                 }
 | |
|             }
 | |
|             this_thread::sleep_for(chrono::milliseconds(100));
 | |
|         }
 | |
|         int32_t bytesReceived = 0;
 | |
|         if(handles[bi] >= 0)
 | |
|         {
 | |
|             if (this->WaitForReading(handles[bi], 1000) == false)
 | |
|                 ++m_bufferFailures;
 | |
|             bytesReceived = this->FinishDataReading(&buffers[bi*bufferSize], bufferSize, handles[bi]);
 | |
|             --activeTransfers;
 | |
|             totalBytesReceived += bytesReceived;
 | |
|             if (bytesReceived != int32_t(bufferSize)) //data should come in full sized packets
 | |
|                 ++m_bufferFailures;
 | |
|         }
 | |
|         bool txLate=false;
 | |
|         for (uint8_t pktIndex = 0; pktIndex < bytesReceived / sizeof(FPGA_DataPacket); ++pktIndex)
 | |
|         {
 | |
|             const FPGA_DataPacket* pkt = (FPGA_DataPacket*)&buffers[bi*bufferSize];
 | |
|             const uint8_t byte0 = pkt[pktIndex].reserved[0];
 | |
|             if ((byte0 & (1 << 3)) != 0 && !txLate) //report only once per batch
 | |
|             {
 | |
|                 txLate = true;
 | |
|                 if(resetFlagsDelay > 0)
 | |
|                     --resetFlagsDelay;
 | |
|                 else
 | |
|                 {
 | |
|                     printf("L");
 | |
|                     resetTxFlags.notify_one();
 | |
|                     resetFlagsDelay = packetsToBatch*buffersCount;
 | |
|                     stream->txLastLateTime.store(pkt[pktIndex].counter);
 | |
|                 }
 | |
|             }
 | |
|             uint8_t* pktStart = (uint8_t*)pkt[pktIndex].data;
 | |
|             if(pkt[pktIndex].counter - prevTs != samplesInPacket && pkt[pktIndex].counter != prevTs)
 | |
|             {
 | |
| #ifndef NDEBUG
 | |
|                 printf("\tRx pktLoss ts diff %lli\n", (long long)pkt[pktIndex].counter - prevTs);
 | |
| #endif
 | |
|                 packetLoss += (pkt[pktIndex].counter - prevTs)/samplesInPacket;
 | |
|             }
 | |
|             prevTs = pkt[pktIndex].counter;
 | |
|             stream->rxLastTimestamp.store(pkt[pktIndex].counter);
 | |
|             //parse samples
 | |
|             vector<complex16_t*> dest(chCount);
 | |
|             for(uint8_t c=0; c<chCount; ++c)
 | |
|                 dest[c] = (chFrames[c].samples);
 | |
|             size_t samplesCount = 0;
 | |
|             fpga::FPGAPacketPayload2Samples(pktStart, 4080, chCount, link, dest.data(), &samplesCount);
 | |
| 
 | |
|             for(int ch=0; ch<chCount; ++ch)
 | |
|             {
 | |
|                 IStreamChannel::Metadata meta;
 | |
|                 meta.timestamp = pkt[pktIndex].counter;
 | |
|                 meta.flags = RingFIFO::OVERWRITE_OLD;
 | |
|                 uint32_t samplesPushed = stream->mRxStreams[ch]->Write((const void*)chFrames[ch].samples, samplesCount, &meta, 100);
 | |
|                 if(samplesPushed != samplesCount)
 | |
|                     droppedSamples += samplesCount-samplesPushed;
 | |
|             }
 | |
|         }
 | |
|         // Re-submit this request to keep the queue full
 | |
|         if(not stream->generateData.load())
 | |
|         {
 | |
|             if(activeTransfers == 0) //reactivate FPGA and USB transfers
 | |
|                 fpga::StartStreaming(this, chipID);
 | |
|             for(int i=0; i<buffersCount-activeTransfers; ++i)
 | |
|             {
 | |
|                 handles[bi] = this->BeginDataReading(&buffers[bi*bufferSize], bufferSize);
 | |
|                 bi = (bi + 1) & (buffersCount-1);
 | |
|                 ++activeTransfers;
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             handles[bi] = -1;
 | |
|             bi = (bi + 1) & (buffersCount-1);
 | |
|         }
 | |
|         t2 = chrono::high_resolution_clock::now();
 | |
|         auto timePeriod = std::chrono::duration_cast<std::chrono::milliseconds>(t2 - t1).count();
 | |
|         if (timePeriod >= 1000)
 | |
|         {
 | |
|             t1 = t2;
 | |
|             //total number of bytes sent per second
 | |
|             double dataRate = 1000.0*totalBytesReceived / timePeriod;
 | |
| #ifndef NDEBUG
 | |
|             //each channel sample rate
 | |
|             float samplingRate = 1000.0*samplesReceived[0] / timePeriod;
 | |
|             printf("Rx: %.3f MB/s, Fs: %.3f MHz, overrun: %i, loss: %i \n", dataRate / 1000000.0, samplingRate / 1000000.0, droppedSamples, packetLoss);
 | |
| #endif
 | |
|             samplesReceived[0] = 0;
 | |
|             totalBytesReceived = 0;
 | |
|             m_bufferFailures = 0;
 | |
|             droppedSamples = 0;
 | |
|             packetLoss = 0;
 | |
|             stream->rxDataRate_Bps.store((uint32_t)dataRate);
 | |
|         }
 | |
|     }
 | |
|     this->AbortReading();
 | |
|     for (int j = 0; j<buffersCount; j++)
 | |
|     {
 | |
|         if(handles[bi] >= 0)
 | |
|         {
 | |
|             this->WaitForReading(handles[bi], 1000);
 | |
|             this->FinishDataReading(&buffers[bi*bufferSize], bufferSize, handles[bi]);
 | |
|         }
 | |
|         bi = (bi + 1) & (buffersCount-1);
 | |
|     }
 | |
|     resetTxFlags.notify_one();
 | |
|     txReset.join();
 | |
|     stream->rxDataRate_Bps.store(0);
 | |
| }
 | |
| 
 | |
| /** @brief Functions dedicated for transmitting packets to board
 | |
|     @param txFIFO data source FIFO
 | |
|     @param terminate periodically pooled flag to terminate thread
 | |
|     @param dataRate_Bps (optional) if not NULL periodically returns data rate in bytes per second
 | |
| */
 | |
| void Connection_uLimeSDR::TransmitPacketsLoop(Streamer* stream)
 | |
| {
 | |
|     //at this point FPGA has to be already configured to output samples
 | |
|     const uint8_t maxChannelCount = 2;
 | |
|     const uint8_t chCount = stream->mTxStreams.size();
 | |
|     const auto link = stream->mTxStreams[0]->config.linkFormat;
 | |
| 
 | |
|     double latency=0;
 | |
|     for (int i = 0; i < chCount; i++)
 | |
|     {
 | |
|         latency += stream->mTxStreams[i]->config.performanceLatency/chCount;
 | |
|     }
 | |
|     const unsigned tmp_cnt = (latency * 4)+0.5;
 | |
| 
 | |
|     const uint8_t buffersCount = 16; // must be power of 2
 | |
|     assert(buffersCount % 2 == 0);
 | |
|     const uint8_t packetsToBatch = (1<<tmp_cnt); //packets in single USB transfer
 | |
|     const uint32_t bufferSize = packetsToBatch*4096;
 | |
|     const uint32_t popTimeout_ms = 100;
 | |
| 
 | |
|     const int maxSamplesBatch = (link==StreamConfig::STREAM_12_BIT_COMPRESSED?1360:1020)/chCount;
 | |
|     vector<int> handles(buffersCount, 0);
 | |
|     vector<bool> bufferUsed(buffersCount, 0);
 | |
|     vector<uint32_t> bytesToSend(buffersCount, 0);
 | |
|     vector<complex16_t> samples[maxChannelCount];
 | |
|     vector<char> buffers;
 | |
|     try
 | |
|     {
 | |
|         for(int i=0; i<chCount; ++i)
 | |
|             samples[i].resize(maxSamplesBatch);
 | |
|         buffers.resize(buffersCount*bufferSize, 0);
 | |
|     }
 | |
|     catch (const std::bad_alloc& ex) //not enough memory for buffers
 | |
|     {
 | |
|         printf("Error allocating Tx buffers, not enough memory\n");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     int m_bufferFailures = 0;
 | |
|     long totalBytesSent = 0;
 | |
| 
 | |
|     uint32_t samplesSent = 0;
 | |
| 
 | |
|     auto t1 = chrono::high_resolution_clock::now();
 | |
|     auto t2 = chrono::high_resolution_clock::now();
 | |
| 
 | |
|     uint8_t bi = 0; //buffer index
 | |
|     while (stream->terminateTx.load() != true)
 | |
|     {
 | |
|         if (bufferUsed[bi])
 | |
|         {
 | |
|             if (this->WaitForSending(handles[bi], 1000) == false)
 | |
|                 ++m_bufferFailures;
 | |
|             uint32_t bytesSent = this->FinishDataSending(&buffers[bi*bufferSize], bytesToSend[bi], handles[bi]);
 | |
|             totalBytesSent += bytesSent;
 | |
|             if (bytesSent != bytesToSend[bi])
 | |
|                 ++m_bufferFailures;
 | |
|             bufferUsed[bi] = false;
 | |
|         }
 | |
|         int i=0;
 | |
| 
 | |
|         while(i<packetsToBatch && stream->terminateTx.load() != true)
 | |
|         {
 | |
|             IStreamChannel::Metadata meta;
 | |
|             FPGA_DataPacket* pkt = reinterpret_cast<FPGA_DataPacket*>(&buffers[bi*bufferSize]);
 | |
|             for(int ch=0; ch<chCount; ++ch)
 | |
|             {
 | |
|                 int samplesPopped = stream->mTxStreams[ch]->Read(samples[ch].data(), maxSamplesBatch, &meta, popTimeout_ms);
 | |
|                 if (samplesPopped != maxSamplesBatch)
 | |
|                 {
 | |
|                 #ifndef NDEBUG
 | |
|                     printf("Warning popping from TX, samples popped %i/%i\n", samplesPopped, maxSamplesBatch);
 | |
|                 #endif
 | |
|                 }
 | |
| 
 | |
|             }
 | |
|             if(stream->terminateTx.load() == true) //early termination
 | |
|                 break;
 | |
|             pkt[i].counter = meta.timestamp;
 | |
|             pkt[i].reserved[0] = 0;
 | |
|             //by default ignore timestamps
 | |
|             const int ignoreTimestamp = !(meta.flags & IStreamChannel::Metadata::SYNC_TIMESTAMP);
 | |
|             pkt[i].reserved[0] |= ((int)ignoreTimestamp << 4); //ignore timestamp
 | |
| 
 | |
|             vector<complex16_t*> src(chCount);
 | |
|             for(uint8_t c=0; c<chCount; ++c)
 | |
|                 src[c] = (samples[c].data());
 | |
|             uint8_t* const dataStart = (uint8_t*)pkt[i].data;
 | |
|             fpga::Samples2FPGAPacketPayload(src.data(), maxSamplesBatch, chCount, link, dataStart, nullptr);
 | |
|             samplesSent += maxSamplesBatch;
 | |
|             ++i;
 | |
|         }
 | |
| 
 | |
|         bytesToSend[bi] = bufferSize;
 | |
|         handles[bi] = this->BeginDataSending(&buffers[bi*bufferSize], bytesToSend[bi]);
 | |
|         bufferUsed[bi] = true;
 | |
| 
 | |
|         t2 = chrono::high_resolution_clock::now();
 | |
|         auto timePeriod = std::chrono::duration_cast<std::chrono::milliseconds>(t2 - t1).count();
 | |
|         if (timePeriod >= 1000)
 | |
|         {
 | |
|             //total number of bytes sent per second
 | |
|             float dataRate = 1000.0*totalBytesSent / timePeriod;
 | |
|             stream->txDataRate_Bps.store(dataRate);
 | |
|             m_bufferFailures = 0;
 | |
|             samplesSent = 0;
 | |
|             totalBytesSent = 0;
 | |
|             t1 = t2;
 | |
| #ifndef NDEBUG
 | |
|             //total number of samples from all channels per second
 | |
|             float sampleRate = 1000.0*samplesSent / timePeriod;
 | |
|             printf("Tx: %.3f MB/s, Fs: %.3f MHz, failures: %i\n", dataRate / 1000000.0, sampleRate / 1000000.0, m_bufferFailures);
 | |
| #endif
 | |
|         }
 | |
|         bi = (bi + 1) & (buffersCount-1);
 | |
|     }
 | |
| 
 | |
|     // Wait for all the queued requests to be cancelled
 | |
|     this->AbortSending();
 | |
|     for (int j = 0; j<buffersCount; j++)
 | |
|     {
 | |
|         if (bufferUsed[bi])
 | |
|         {
 | |
|             this->WaitForSending(handles[bi], 1000);
 | |
|             this->FinishDataSending(&buffers[bi*bufferSize], bufferSize, handles[bi]);
 | |
|         }
 | |
|         bi = (bi + 1) & (buffersCount-1);
 | |
|     }
 | |
|     stream->txDataRate_Bps.store(0);
 | |
| }
 |