1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-22 08:04:49 -05:00
sdrangel/plugins/samplemimo/testmi/testmiworker.cpp

408 lines
12 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2018-2020 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// Copyright (C) 2020 Kacper Michajłow <kasper93@gmail.com> //
// Copyright (C) 2022 Jiří Pinkava <jiri.pinkava@rossum.ai> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <cmath>
#include <stdio.h>
#include <errno.h>
#include "dsp/samplemififo.h"
#include "testmiworker.h"
#define TESTMI_BLOCKSIZE 16384
TestMIWorker::TestMIWorker(SampleMIFifo* sampleFifo, int streamIndex, QObject* parent) :
QObject(parent),
m_running(false),
m_buf(0),
m_bufsize(0),
m_chunksize(0),
m_convertBuffer(TESTMI_BLOCKSIZE),
m_sampleFifo(sampleFifo),
m_streamIndex(streamIndex),
m_frequencyShift(0),
m_toneFrequency(440),
m_modulation(TestMIStreamSettings::ModulationNone),
m_amModulation(0.5f),
m_fmDeviationUnit(0.0f),
m_fmPhasor(0.0f),
m_pulseWidth(150),
m_pulseSampleCount(0),
m_pulsePatternCount(0),
m_pulsePatternCycle(8),
m_pulsePatternPlaces(3),
m_samplerate(48000),
m_log2Decim(4),
m_fcPos(0),
m_bitSizeIndex(0),
m_bitShift(8),
m_amplitudeBits(127),
m_dcBias(0.0f),
m_iBias(0.0f),
m_qBias(0.0f),
m_phaseImbalance(0.0f),
m_amplitudeBitsDC(0),
m_amplitudeBitsI(127),
m_amplitudeBitsQ(127),
m_frequency(435*1000),
m_fcPosShift(0),
m_throttlems(TESTMI_THROTTLE_MS),
m_throttleToggle(false)
{
connect(&m_inputMessageQueue, SIGNAL(messageEnqueued()), this, SLOT(handleInputMessages()), Qt::QueuedConnection);
}
TestMIWorker::~TestMIWorker()
{
}
void TestMIWorker::startWork()
{
m_timer.setTimerType(Qt::PreciseTimer);
connect(&m_timer, SIGNAL(timeout()), this, SLOT(tick()));
m_timer.start(50);
m_elapsedTimer.start();
m_running = true;
}
void TestMIWorker::stopWork()
{
m_running = false;
m_timer.stop();
disconnect(&m_timer, SIGNAL(timeout()), this, SLOT(tick()));
}
void TestMIWorker::setSamplerate(int samplerate)
{
QMutexLocker mutexLocker(&m_mutex);
m_samplerate = samplerate;
m_chunksize = 4 * ((m_samplerate * (m_throttlems+(m_throttleToggle ? 1 : 0))) / 1000);
m_throttleToggle = !m_throttleToggle;
m_nco.setFreq(m_frequencyShift, m_samplerate);
m_toneNco.setFreq(m_toneFrequency, m_samplerate);
}
void TestMIWorker::setLog2Decimation(unsigned int log2_decim)
{
m_log2Decim = log2_decim;
}
void TestMIWorker::setFcPos(int fcPos)
{
m_fcPos = fcPos;
}
void TestMIWorker::setBitSize(quint32 bitSizeIndex)
{
switch (bitSizeIndex)
{
case 0:
m_bitShift = 7;
m_bitSizeIndex = 0;
break;
case 1:
m_bitShift = 11;
m_bitSizeIndex = 1;
break;
case 2:
default:
m_bitShift = 15;
m_bitSizeIndex = 2;
break;
}
}
void TestMIWorker::setAmplitudeBits(int32_t amplitudeBits)
{
m_amplitudeBits = amplitudeBits;
m_amplitudeBitsDC = m_dcBias * amplitudeBits;
m_amplitudeBitsI = (1.0f + m_iBias) * amplitudeBits;
m_amplitudeBitsQ = (1.0f + m_qBias) * amplitudeBits;
}
void TestMIWorker::setDCFactor(float dcFactor)
{
m_dcBias = dcFactor;
m_amplitudeBitsDC = m_dcBias * m_amplitudeBits;
}
void TestMIWorker::setIFactor(float iFactor)
{
m_iBias = iFactor;
m_amplitudeBitsI = (1.0f + m_iBias) * m_amplitudeBits;
}
void TestMIWorker::setQFactor(float iFactor)
{
m_qBias = iFactor;
m_amplitudeBitsQ = (1.0f + m_qBias) * m_amplitudeBits;
}
void TestMIWorker::setPhaseImbalance(float phaseImbalance)
{
m_phaseImbalance = phaseImbalance;
}
void TestMIWorker::setFrequencyShift(int shift)
{
m_nco.setFreq(shift, m_samplerate);
}
void TestMIWorker::setToneFrequency(int toneFrequency)
{
m_toneNco.setFreq(toneFrequency, m_samplerate);
}
void TestMIWorker::setModulation(TestMIStreamSettings::Modulation modulation)
{
m_modulation = modulation;
}
void TestMIWorker::setAMModulation(float amModulation)
{
m_amModulation = amModulation < 0.0f ? 0.0f : amModulation > 1.0f ? 1.0f : amModulation;
}
void TestMIWorker::setFMDeviation(float deviation)
{
float fmDeviationUnit = deviation / (float) m_samplerate;
m_fmDeviationUnit = fmDeviationUnit < 0.0f ? 0.0f : fmDeviationUnit > 0.5f ? 0.5f : fmDeviationUnit;
qDebug("TestMIWorker::setFMDeviation: m_fmDeviationUnit: %f", m_fmDeviationUnit);
}
void TestMIWorker::setBuffers(quint32 chunksize)
{
if (chunksize > m_bufsize)
{
m_bufsize = chunksize;
if (m_buf == 0)
{
qDebug() << "TestMIWorker::setBuffer: Allocate buffer: "
<< " size: " << m_bufsize << " bytes"
<< " #samples: " << (m_bufsize/4);
m_buf = (qint16*) malloc(m_bufsize);
}
else
{
qDebug() << "TestMIWorker::setBuffer: Re-allocate buffer: "
<< " size: " << m_bufsize << " bytes"
<< " #samples: " << (m_bufsize/4);
free(m_buf);
m_buf = (qint16*) malloc(m_bufsize);
}
m_convertBuffer.resize(chunksize/4);
}
}
void TestMIWorker::generate(quint32 chunksize)
{
int n = chunksize / 2;
setBuffers(chunksize);
for (int i = 0; i < n-1;)
{
switch (m_modulation)
{
case TestMIStreamSettings::ModulationAM:
{
Complex c = m_nco.nextIQ();
Real t, re, im;
pullAF(t);
t = (t*m_amModulation + 1.0f)*0.5f;
re = c.real()*t;
im = c.imag()*t + m_phaseImbalance*re;
m_buf[i++] = (int16_t) (re * (float) m_amplitudeBitsI) + m_amplitudeBitsDC;
m_buf[i++] = (int16_t) (im * (float) m_amplitudeBitsQ);
}
break;
case TestMIStreamSettings::ModulationFM:
{
Complex c = m_nco.nextIQ();
Real t, re, im;
pullAF(t);
m_fmPhasor += m_fmDeviationUnit * t;
m_fmPhasor = m_fmPhasor < -1.0f ? -m_fmPhasor - 1.0f : m_fmPhasor > 1.0f ? m_fmPhasor - 1.0f : m_fmPhasor;
re = c.real()*cos(m_fmPhasor*M_PI) - c.imag()*sin(m_fmPhasor*M_PI);
im = (c.real()*sin(m_fmPhasor*M_PI) + c.imag()*cos(m_fmPhasor*M_PI)) + m_phaseImbalance*re;
m_buf[i++] = (int16_t) (re * (float) m_amplitudeBitsI) + m_amplitudeBitsDC;
m_buf[i++] = (int16_t) (im * (float) m_amplitudeBitsQ);
}
break;
case TestMIStreamSettings::ModulationPattern0: // binary pattern
{
if (m_pulseSampleCount < m_pulseWidth) // sync pattern: 0
{
m_buf[i++] = m_amplitudeBitsDC;
m_buf[i++] = 0;
}
else if (m_pulseSampleCount < 2*m_pulseWidth) // sync pattern: 1
{
m_buf[i++] = (int16_t) (m_amplitudeBitsI + m_amplitudeBitsDC);
m_buf[i++] = (int16_t) (m_phaseImbalance * (float) m_amplitudeBitsQ);
}
else if (m_pulseSampleCount < 3*m_pulseWidth) // sync pattern: 0
{
m_buf[i++] = m_amplitudeBitsDC;
m_buf[i++] = 0;
}
else if (m_pulseSampleCount < (3+m_pulsePatternPlaces)*m_pulseWidth) // binary pattern
{
uint32_t patPulseSampleCount = m_pulseSampleCount - 3*m_pulseWidth;
uint32_t patPulseIndex = patPulseSampleCount / m_pulseWidth;
float patFigure = (m_pulsePatternCount & (1<<patPulseIndex)) != 0 ? 0.3 : 0.0; // make binary pattern ~-10dB vs sync pattern
m_buf[i++] = (int16_t) (patFigure * (float) m_amplitudeBitsI) + m_amplitudeBitsDC;
m_buf[i++] = (int16_t) (patFigure * (float) m_phaseImbalance * m_amplitudeBitsQ);
}
if (m_pulseSampleCount < (4+m_pulsePatternPlaces)*m_pulseWidth - 1)
{
m_pulseSampleCount++;
}
else
{
if (m_pulsePatternCount < m_pulsePatternCycle - 1) {
m_pulsePatternCount++;
} else {
m_pulsePatternCount = 0;
}
m_pulseSampleCount = 0;
}
}
break;
case TestMIStreamSettings::ModulationPattern1: // sawtooth pattern
{
Real re, im;
re = (float) (m_pulseWidth - m_pulseSampleCount) / (float) m_pulseWidth;
im = m_phaseImbalance*re;
m_buf[i++] = (int16_t) (re * (float) m_amplitudeBitsI) + m_amplitudeBitsDC;
m_buf[i++] = (int16_t) (im * (float) m_amplitudeBitsQ);
if (m_pulseSampleCount < m_pulseWidth - 1) {
m_pulseSampleCount++;
} else {
m_pulseSampleCount = 0;
}
}
break;
case TestMIStreamSettings::ModulationPattern2: // 50% duty cycle square pattern
{
if (m_pulseSampleCount < m_pulseWidth) // 1
{
m_buf[i++] = (int16_t) (m_amplitudeBitsI + m_amplitudeBitsDC);
m_buf[i++] = (int16_t) (m_phaseImbalance * (float) m_amplitudeBitsQ);
} else { // 0
m_buf[i++] = m_amplitudeBitsDC;
m_buf[i++] = 0;
}
if (m_pulseSampleCount < 2*m_pulseWidth - 1) {
m_pulseSampleCount++;
} else {
m_pulseSampleCount = 0;
}
}
break;
case TestMIStreamSettings::ModulationNone:
default:
{
Complex c = m_nco.nextIQ(m_phaseImbalance);
m_buf[i++] = (int16_t) (c.real() * (float) m_amplitudeBitsI) + m_amplitudeBitsDC;
m_buf[i++] = (int16_t) (c.imag() * (float) m_amplitudeBitsQ);
}
break;
}
}
callback(m_buf, n);
}
void TestMIWorker::pullAF(Real& afSample)
{
afSample = m_toneNco.next();
}
// call appropriate conversion (decimation) routine depending on the number of sample bits
void TestMIWorker::callback(const qint16* buf, qint32 len)
{
SampleVector::iterator it = m_convertBuffer.begin();
switch (m_bitSizeIndex)
{
case 0: // 8 bit samples
convert_8(&it, buf, len);
break;
case 1: // 12 bit samples
convert_12(&it, buf, len);
break;
case 2: // 16 bit samples
default:
convert_16(&it, buf, len);
break;
}
m_sampleFifo->writeAsync(m_convertBuffer.begin(), it - m_convertBuffer.begin(), m_streamIndex);
}
void TestMIWorker::tick()
{
if (m_running)
{
qint64 throttlems = m_elapsedTimer.restart();
if ((throttlems > 45) && (throttlems < 55) && (throttlems != m_throttlems))
{
QMutexLocker mutexLocker(&m_mutex);
m_throttlems = throttlems;
m_chunksize = 4 * ((m_samplerate * (m_throttlems+(m_throttleToggle ? 1 : 0))) / 1000);
m_throttleToggle = !m_throttleToggle;
}
generate(m_chunksize);
}
}
void TestMIWorker::handleInputMessages()
{
}
void TestMIWorker::setPattern0()
{
m_pulseWidth = 150;
m_pulseSampleCount = 0;
m_pulsePatternCount = 0;
m_pulsePatternCycle = 8;
m_pulsePatternPlaces = 3;
}
void TestMIWorker::setPattern1()
{
m_pulseWidth = 1000;
m_pulseSampleCount = 0;
}
void TestMIWorker::setPattern2()
{
m_pulseWidth = 1000;
m_pulseSampleCount = 0;
}