1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-16 13:21:50 -05:00
sdrangel/sdrbase/dsp/vulkanvkfftengine.cpp

345 lines
12 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2023 Jon Beniston, M7RCE <jon@beniston.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QDebug>
#include "glslang_c_interface.h"
#include "dsp/vulkanvkfftengine.h"
class GLSInitialiser {
public:
GLSInitialiser() {
glslang_initialize_process();
};
~GLSInitialiser() {
glslang_finalize_process();
}
};
static GLSInitialiser glsInitialiser;
VulkanvkFFTEngine::VulkanvkFFTEngine()
{
VkFFTResult resFFT;
resFFT = gpuInit();
if (resFFT != VKFFT_SUCCESS)
{
qDebug() << "VulkanvkFFTEngine::VulkanvkFFTEngine: Failed to initialise GPU:" << getVkFFTErrorString(resFFT);
delete vkGPU;
vkGPU = nullptr;
}
}
VulkanvkFFTEngine::~VulkanvkFFTEngine()
{
if (vkGPU)
{
freeAll();
vkDestroyFence(vkGPU->device, vkGPU->fence, nullptr);
vkDestroyCommandPool(vkGPU->device, vkGPU->commandPool, nullptr);
vkDestroyDevice(vkGPU->device, nullptr);
DestroyDebugUtilsMessengerEXT(vkGPU, nullptr);
vkDestroyInstance(vkGPU->instance, nullptr);
}
}
const QString VulkanvkFFTEngine::m_name = "vkFFT (Vulkan)";
QString VulkanvkFFTEngine::getName() const
{
return m_name;
}
VkFFTResult VulkanvkFFTEngine::gpuInit()
{
VkResult res = VK_SUCCESS;
// To enable validation on Windows:
// set VK_LAYER_PATH=%VULKAN_SDK%\Bin
// set VK_INSTANCE_LAYERS=VK_LAYER_LUNARG_api_dump;VK_LAYER_KHRONOS_validation
// https://vulkan.lunarg.com/doc/view/1.3.204.1/windows/layer_configuration.html
// Create vk_layer_settings.txt in working dir
// Or run vkconfig to do so
// Create instance - a connection between the application and the Vulkan library
res = createInstance(vkGPU, 0);
if (res != 0) {
return VKFFT_ERROR_FAILED_TO_CREATE_INSTANCE;
}
// Set up the debugging messenger
res = setupDebugMessenger(vkGPU);
if (res != 0) {
return VKFFT_ERROR_FAILED_TO_SETUP_DEBUG_MESSENGER;
}
// Check if there are GPUs that support Vulkan and select one
res = findPhysicalDevice(vkGPU);
if (res != 0) {
return VKFFT_ERROR_FAILED_TO_FIND_PHYSICAL_DEVICE;
}
// Create logical device representation
res = createDevice(vkGPU, 0);
if (res != 0) {
return VKFFT_ERROR_FAILED_TO_CREATE_DEVICE;
}
// Create fence for synchronization
res = createFence(vkGPU);
if (res != 0) {
return VKFFT_ERROR_FAILED_TO_CREATE_FENCE;
}
// Create a place, command buffer memory is allocated from
res = createCommandPool(vkGPU);
if (res != 0) {
return VKFFT_ERROR_FAILED_TO_CREATE_COMMAND_POOL;
}
vkGetPhysicalDeviceProperties(vkGPU->physicalDevice, &vkGPU->physicalDeviceProperties);
vkGetPhysicalDeviceMemoryProperties(vkGPU->physicalDevice, &vkGPU->physicalDeviceMemoryProperties);
return VKFFT_SUCCESS;
}
VkFFTResult VulkanvkFFTEngine::gpuAllocateBuffers()
{
VkFFTResult resFFT;
VulkanPlan *plan = reinterpret_cast<VulkanPlan *>(m_currentPlan);
// Allocate GPU memory
resFFT = allocateBuffer(vkGPU,
&plan->m_buffer,
&plan->m_bufferDeviceMemory,
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
plan->m_bufferSize);
if (resFFT != VKFFT_SUCCESS) {
return resFFT;
}
// Allocate CPU/GPU memory (Requires m_currentPlan->m_buffer to have been created)
resFFT = vulkanAllocateIn(plan);
if (resFFT != VKFFT_SUCCESS) {
return resFFT;
}
resFFT = vulkanAllocateOut(plan);
if (resFFT != VKFFT_SUCCESS) {
return resFFT;
}
plan->m_configuration->buffer = &plan->m_buffer;
return VKFFT_SUCCESS;
}
VkFFTResult VulkanvkFFTEngine::gpuConfigure()
{
VkFFTResult resFFT;
VulkanPlan *plan = reinterpret_cast<VulkanPlan *>(m_currentPlan);
// Allocate command buffer with command to perform FFT
resFFT = vulkanAllocateFFTCommand(plan);
if (resFFT != VKFFT_SUCCESS) {
return resFFT;
}
return VKFFT_SUCCESS;
}
// Allocate CPU to GPU memory buffer
VkFFTResult VulkanvkFFTEngine::vulkanAllocateIn(VulkanPlan *plan)
{
VkFFTResult resFFT;
VkResult res = VK_SUCCESS;
VkBuffer* buffer = (VkBuffer*)&plan->m_buffer;
resFFT = allocateBuffer(vkGPU, &plan->m_inBuffer, &plan->m_inMemory, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT, m_currentPlan->m_bufferSize);
if (resFFT != VKFFT_SUCCESS) {
return resFFT;
}
void* data;
res = vkMapMemory(vkGPU->device, plan->m_inMemory, 0, plan->m_bufferSize, 0, &data);
if (res != VK_SUCCESS) {
return VKFFT_ERROR_FAILED_TO_MAP_MEMORY;
}
plan->m_in = (Complex*) data;
return VKFFT_SUCCESS;
}
// Allocate GPU to CPU memory buffer
VkFFTResult VulkanvkFFTEngine::vulkanAllocateOut(VulkanPlan *plan)
{
VkFFTResult resFFT;
VkResult res;
VkBuffer* buffer = (VkBuffer*)&plan->m_buffer;
resFFT = allocateBuffer(vkGPU, &plan->m_outBuffer, &plan->m_outMemory, VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT, m_currentPlan->m_bufferSize);
if (resFFT != VKFFT_SUCCESS) {
return resFFT;
}
void* data;
res = vkMapMemory(vkGPU->device, plan->m_outMemory, 0, plan->m_bufferSize, 0, &data);
if (res != VK_SUCCESS) {
return VKFFT_ERROR_FAILED_TO_MAP_MEMORY;
}
plan->m_out = (Complex*) data;
return VKFFT_SUCCESS;
}
void VulkanvkFFTEngine::vulkanDeallocateIn(VulkanPlan *plan)
{
vkUnmapMemory(vkGPU->device, plan->m_inMemory);
vkDestroyBuffer(vkGPU->device, plan->m_inBuffer, nullptr);
vkFreeMemory(vkGPU->device, plan->m_inMemory, nullptr);
plan->m_in = nullptr;
}
void VulkanvkFFTEngine::vulkanDeallocateOut(VulkanPlan *plan)
{
vkUnmapMemory(vkGPU->device, plan->m_outMemory);
vkDestroyBuffer(vkGPU->device, plan->m_outBuffer, nullptr);
vkFreeMemory(vkGPU->device, plan->m_outMemory, nullptr);
plan->m_out = nullptr;
}
VkFFTResult VulkanvkFFTEngine::vulkanAllocateFFTCommand(VulkanPlan *plan)
{
VkFFTResult resFFT;
VkResult res = VK_SUCCESS;
VkCommandBufferAllocateInfo commandBufferAllocateInfo = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO };
commandBufferAllocateInfo.commandPool = vkGPU->commandPool;
commandBufferAllocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
commandBufferAllocateInfo.commandBufferCount = 1;
res = vkAllocateCommandBuffers(vkGPU->device, &commandBufferAllocateInfo, &plan->m_commandBuffer);
if (res != 0) {
return VKFFT_ERROR_FAILED_TO_ALLOCATE_COMMAND_BUFFERS;
}
VkCommandBufferBeginInfo commandBufferBeginInfo = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO };
commandBufferBeginInfo.flags = 0;
res = vkBeginCommandBuffer(plan->m_commandBuffer, &commandBufferBeginInfo);
if (res != 0) {
return VKFFT_ERROR_FAILED_TO_BEGIN_COMMAND_BUFFER;
}
VkBuffer* buffer = (VkBuffer*)&plan->m_buffer;
// Copy from CPU to GPU
VkBufferCopy copyRegionIn = { 0 };
copyRegionIn.srcOffset = 0;
copyRegionIn.dstOffset = 0;
copyRegionIn.size = plan->m_bufferSize;
vkCmdCopyBuffer(plan->m_commandBuffer, plan->m_inBuffer, buffer[0], 1, &copyRegionIn);
// Wait for copy to complete
VkMemoryBarrier memoryBarrierIn = {
VK_STRUCTURE_TYPE_MEMORY_BARRIER,
0,
VK_ACCESS_SHADER_WRITE_BIT,
VK_ACCESS_SHADER_READ_BIT,
};
vkCmdPipelineBarrier(
plan->m_commandBuffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
0,
1,
&memoryBarrierIn,
0, 0, 0, 0);
// Perform FFT
VkFFTLaunchParams launchParams = {};
launchParams.commandBuffer = &plan->m_commandBuffer;
resFFT = VkFFTAppend(plan->m_app, plan->m_inverse, &launchParams);
if (resFFT != VKFFT_SUCCESS) {
return resFFT;
}
// Wait for FFT to complete
VkMemoryBarrier memoryBarrierOut = {
VK_STRUCTURE_TYPE_MEMORY_BARRIER,
0,
VK_ACCESS_SHADER_WRITE_BIT,
VK_ACCESS_HOST_READ_BIT,
};
vkCmdPipelineBarrier(
plan->m_commandBuffer,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_HOST_BIT,
0,
1,
&memoryBarrierIn,
0, 0, 0, 0);
// Copy from GPU to CPU
VkBufferCopy copyRegionOut = { 0 };
copyRegionOut.srcOffset = 0;
copyRegionOut.dstOffset = 0;
copyRegionOut.size = plan->m_bufferSize;
vkCmdCopyBuffer(plan->m_commandBuffer, buffer[0], plan->m_outBuffer, 1, &copyRegionOut);
res = vkEndCommandBuffer(plan->m_commandBuffer);
if (res != 0) {
return VKFFT_ERROR_FAILED_TO_END_COMMAND_BUFFER;
}
return VKFFT_SUCCESS;
}
void VulkanvkFFTEngine::transform()
{
PROFILER_START()
VkResult res = VK_SUCCESS;
VulkanPlan *plan = reinterpret_cast<VulkanPlan *>(m_currentPlan);
VkSubmitInfo submitInfo = { VK_STRUCTURE_TYPE_SUBMIT_INFO };
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &plan->m_commandBuffer;
res = vkQueueSubmit(vkGPU->queue, 1, &submitInfo, vkGPU->fence);
if (res != 0) {
qDebug() << "VulkanvkFFTEngine::transform: Failed to submit to queue";
}
res = vkWaitForFences(vkGPU->device, 1, &vkGPU->fence, VK_TRUE, 100000000000);
if (res != 0) {
qDebug() << "VulkanvkFFTEngine::transform: Failed to wait for fences";
}
res = vkResetFences(vkGPU->device, 1, &vkGPU->fence);
if (res != 0) {
qDebug() << "VulkanvkFFTEngine::transform: Failed to reset fences";
}
PROFILER_STOP(QString("%1 FFT %2").arg(getName()).arg(m_currentPlan->n))
}
vkFFTEngine::Plan *VulkanvkFFTEngine::gpuAllocatePlan()
{
return new VulkanPlan();
}
void VulkanvkFFTEngine::gpuDeallocatePlan(Plan *p)
{
VulkanPlan *plan = reinterpret_cast<VulkanPlan *>(p);
vulkanDeallocateOut(plan);
vulkanDeallocateIn(plan);
vkFreeCommandBuffers(vkGPU->device, vkGPU->commandPool, 1, &plan->m_commandBuffer);
vkDestroyBuffer(vkGPU->device, plan->m_buffer, nullptr);
vkFreeMemory(vkGPU->device, plan->m_bufferDeviceMemory, nullptr);
}