1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-13 20:01:46 -05:00
sdrangel/sdrgui/gui/glspectrum.cpp
2020-11-14 18:45:05 +01:00

2437 lines
72 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016 F4EXB //
// written by Edouard Griffiths //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#if 0 //def USE_SSE2
#include <emmintrin.h>
#endif
#include <QMouseEvent>
#include <QOpenGLShaderProgram>
#include <QOpenGLFunctions>
#include <QPainter>
#include <QFontDatabase>
#include "gui/glspectrum.h"
#include "util/messagequeue.h"
#include <QDebug>
MESSAGE_CLASS_DEFINITION(GLSpectrum::MsgReportSampleRate, Message)
MESSAGE_CLASS_DEFINITION(GLSpectrum::MsgReportWaterfallShare, Message)
GLSpectrum::GLSpectrum(QWidget* parent) :
QGLWidget(parent),
m_cursorState(CSNormal),
m_cursorChannel(0),
m_masterTimer(nullptr),
m_mouseInside(false),
m_changesPending(true),
m_centerFrequency(100000000),
m_referenceLevel(0),
m_powerRange(100),
m_linear(false),
m_decay(1),
m_sampleRate(500000),
m_timingRate(1),
m_fftSize(512),
m_displayGrid(true),
m_displayGridIntensity(5),
m_displayTraceIntensity(50),
m_invertedWaterfall(false),
m_displayMaxHold(false),
m_currentSpectrum(nullptr),
m_displayCurrent(false),
m_leftMargin(0),
m_rightMargin(0),
m_topMargin(0),
m_frequencyScaleHeight(0),
m_histogramHeight(20),
m_waterfallHeight(0),
m_bottomMargin(0),
m_waterfallBuffer(nullptr),
m_waterfallBufferPos(0),
m_waterfallTextureHeight(-1),
m_waterfallTexturePos(0),
m_displayWaterfall(true),
m_ssbSpectrum(false),
m_lsbDisplay(false),
m_histogramBuffer(nullptr),
m_histogram(nullptr),
m_displayHistogram(true),
m_displayChanged(false),
m_displaySourceOrSink(true),
m_displayStreamIndex(0),
m_matrixLoc(0),
m_colorLoc(0),
m_messageQueueToGUI(nullptr)
{
setAutoFillBackground(false);
setAttribute(Qt::WA_OpaquePaintEvent, true);
setAttribute(Qt::WA_NoSystemBackground, true);
setMouseTracking(true);
setMinimumSize(200, 200);
m_waterfallShare = 0.66;
for (int i = 0; i <= 239; i++)
{
QColor c;
c.setHsv(239 - i, 255, 15 + i);
((quint8*)&m_waterfallPalette[i])[0] = c.red();
((quint8*)&m_waterfallPalette[i])[1] = c.green();
((quint8*)&m_waterfallPalette[i])[2] = c.blue();
((quint8*)&m_waterfallPalette[i])[3] = c.alpha();
}
m_waterfallPalette[239] = 0xffffffff;
m_histogramPalette[0] = 0;
for (int i = 1; i < 240; i++)
{
QColor c;
int light = i < 60 ? 128 + (60-i) : 128;
int sat = i < 60 ? 140 + i : i < 180 ? 200 : 200 - (i-180);
c.setHsl(239 - i, sat, light);
((quint8*)&m_histogramPalette[i])[0] = c.red();
((quint8*)&m_histogramPalette[i])[1] = c.green();
((quint8*)&m_histogramPalette[i])[2] = c.blue();
((quint8*)&m_histogramPalette[i])[3] = c.alpha();
}
// 4.2.3 palette
// for (int i = 1; i < 240; i++)
// {
// QColor c;
// int val = i < 60 ? 255 : 200;
// int sat = i < 60 ? 128 : i < 180 ? 255 : 180;
// c.setHsv(239 - i, sat, val);
// ((quint8*)&m_histogramPalette[i])[0] = c.red();
// ((quint8*)&m_histogramPalette[i])[1] = c.green();
// ((quint8*)&m_histogramPalette[i])[2] = c.blue();
// ((quint8*)&m_histogramPalette[i])[3] = c.alpha();
// }
// Original palette:
// for(int i = 16; i < 240; i++) {
// QColor c;
// c.setHsv(239 - i, 255 - ((i < 200) ? 0 : (i - 200) * 3), 150 + ((i < 100) ? i : 100));
// ((quint8*)&m_histogramPalette[i])[0] = c.red();
// ((quint8*)&m_histogramPalette[i])[1] = c.green();
// ((quint8*)&m_histogramPalette[i])[2] = c.blue();
// ((quint8*)&m_histogramPalette[i])[3] = c.alpha();
// }
// for(int i = 1; i < 16; i++) {
// QColor c;
// c.setHsv(255, 128, 48 + i * 4);
// ((quint8*)&m_histogramPalette[i])[0] = c.red();
// ((quint8*)&m_histogramPalette[i])[1] = c.green();
// ((quint8*)&m_histogramPalette[i])[2] = c.blue();
// ((quint8*)&m_histogramPalette[i])[3] = c.alpha();
// }
m_decayDivisor = 1;
m_decayDivisorCount = m_decayDivisor;
m_histogramStroke = 30;
m_timeScale.setFont(font());
m_timeScale.setOrientation(Qt::Vertical);
m_timeScale.setRange(Unit::Time, 0, 1);
m_powerScale.setFont(font());
m_powerScale.setOrientation(Qt::Vertical);
m_frequencyScale.setFont(font());
m_frequencyScale.setOrientation(Qt::Horizontal);
m_textOverlayFont = font(); // QFontDatabase::systemFont(QFontDatabase::FixedFont);
m_textOverlayFont.setBold(true);
// m_textOverlayFont.setPointSize(font().pointSize() - 1);
connect(&m_timer, SIGNAL(timeout()), this, SLOT(tick()));
m_timer.start(50);
}
GLSpectrum::~GLSpectrum()
{
QMutexLocker mutexLocker(&m_mutex);
if (m_waterfallBuffer)
{
delete m_waterfallBuffer;
m_waterfallBuffer = nullptr;
}
if (m_histogramBuffer)
{
delete m_histogramBuffer;
m_histogramBuffer = nullptr;
}
if (m_histogram)
{
delete[] m_histogram;
m_histogram = nullptr;
}
}
void GLSpectrum::setCenterFrequency(qint64 frequency)
{
m_mutex.lock();
m_centerFrequency = frequency;
m_changesPending = true;
m_mutex.unlock();
update();
}
void GLSpectrum::setReferenceLevel(Real referenceLevel)
{
m_mutex.lock();
m_referenceLevel = referenceLevel;
m_changesPending = true;
m_mutex.unlock();
update();
}
void GLSpectrum::setPowerRange(Real powerRange)
{
m_mutex.lock();
m_powerRange = powerRange;
m_changesPending = true;
m_mutex.unlock();
update();
}
void GLSpectrum::setDecay(int decay)
{
m_decay = decay < 0 ? 0 : decay > 20 ? 20 : decay;
}
void GLSpectrum::setDecayDivisor(int decayDivisor)
{
m_decayDivisor = decayDivisor < 1 ? 1 : decayDivisor > 20 ? 20 : decayDivisor;
}
void GLSpectrum::setHistoStroke(int stroke)
{
m_histogramStroke = stroke < 1 ? 1 : stroke > 60 ? 60 : stroke;
}
void GLSpectrum::setSampleRate(qint32 sampleRate)
{
m_mutex.lock();
m_sampleRate = sampleRate;
if (m_messageQueueToGUI) {
m_messageQueueToGUI->push(new MsgReportSampleRate(m_sampleRate));
}
m_changesPending = true;
m_mutex.unlock();
update();
}
void GLSpectrum::setTimingRate(qint32 timingRate)
{
m_mutex.lock();
m_timingRate = timingRate;
m_changesPending = true;
m_mutex.unlock();
update();
}
void GLSpectrum::setDisplayWaterfall(bool display)
{
m_mutex.lock();
m_displayWaterfall = display;
if (!display) {
m_waterfallMarkers.clear();
}
m_changesPending = true;
stopDrag();
m_mutex.unlock();
update();
}
void GLSpectrum::setSsbSpectrum(bool ssbSpectrum)
{
m_ssbSpectrum = ssbSpectrum;
update();
}
void GLSpectrum::setLsbDisplay(bool lsbDisplay)
{
m_lsbDisplay = lsbDisplay;
update();
}
void GLSpectrum::setInvertedWaterfall(bool inv)
{
m_mutex.lock();
m_invertedWaterfall = inv;
m_changesPending = true;
stopDrag();
m_mutex.unlock();
update();
}
void GLSpectrum::setDisplayMaxHold(bool display)
{
m_mutex.lock();
m_displayMaxHold = display;
if (!m_displayMaxHold && !m_displayCurrent && !m_displayHistogram) {
m_histogramMarkers.clear();
}
m_changesPending = true;
stopDrag();
m_mutex.unlock();
update();
}
void GLSpectrum::setDisplayCurrent(bool display)
{
m_mutex.lock();
m_displayCurrent = display;
if (!m_displayMaxHold && !m_displayCurrent && !m_displayHistogram) {
m_histogramMarkers.clear();
}
m_changesPending = true;
stopDrag();
m_mutex.unlock();
update();
}
void GLSpectrum::setDisplayHistogram(bool display)
{
m_mutex.lock();
m_displayHistogram = display;
if (!m_displayMaxHold && !m_displayCurrent && !m_displayHistogram) {
m_histogramMarkers.clear();
}
m_changesPending = true;
stopDrag();
m_mutex.unlock();
update();
}
void GLSpectrum::setDisplayGrid(bool display)
{
m_displayGrid = display;
update();
}
void GLSpectrum::setDisplayGridIntensity(int intensity)
{
m_displayGridIntensity = intensity;
if (m_displayGridIntensity > 100) {
m_displayGridIntensity = 100;
} else if (m_displayGridIntensity < 0) {
m_displayGridIntensity = 0;
}
update();
}
void GLSpectrum::setDisplayTraceIntensity(int intensity)
{
m_displayTraceIntensity = intensity;
if (m_displayTraceIntensity > 100) {
m_displayTraceIntensity = 100;
} else if (m_displayTraceIntensity < 0) {
m_displayTraceIntensity = 0;
}
update();
}
void GLSpectrum::setLinear(bool linear)
{
m_mutex.lock();
m_linear = linear;
m_changesPending = true;
m_mutex.unlock();
update();
}
void GLSpectrum::addChannelMarker(ChannelMarker* channelMarker)
{
m_mutex.lock();
connect(channelMarker, SIGNAL(changedByAPI()), this, SLOT(channelMarkerChanged()));
connect(channelMarker, SIGNAL(destroyed(QObject*)), this, SLOT(channelMarkerDestroyed(QObject*)));
m_channelMarkerStates.append(new ChannelMarkerState(channelMarker));
m_changesPending = true;
stopDrag();
m_mutex.unlock();
update();
}
void GLSpectrum::removeChannelMarker(ChannelMarker* channelMarker)
{
m_mutex.lock();
for (int i = 0; i < m_channelMarkerStates.size(); ++i)
{
if (m_channelMarkerStates[i]->m_channelMarker == channelMarker)
{
channelMarker->disconnect(this);
delete m_channelMarkerStates.takeAt(i);
m_changesPending = true;
stopDrag();
m_mutex.unlock();
update();
return;
}
}
m_mutex.unlock();
}
void GLSpectrum::newSpectrum(const std::vector<Real>& spectrum, int fftSize)
{
QMutexLocker mutexLocker(&m_mutex);
m_displayChanged = true;
if (m_changesPending)
{
m_fftSize = fftSize;
return;
}
if (fftSize != m_fftSize)
{
m_fftSize = fftSize;
m_changesPending = true;
return;
}
updateWaterfall(spectrum);
updateHistogram(spectrum);
}
void GLSpectrum::updateWaterfall(const std::vector<Real>& spectrum)
{
if (m_waterfallBufferPos < m_waterfallBuffer->height())
{
quint32* pix = (quint32*)m_waterfallBuffer->scanLine(m_waterfallBufferPos);
for (int i = 0; i < m_fftSize; i++)
{
int v = (int)((spectrum[i] - m_referenceLevel) * 2.4 * 100.0 / m_powerRange + 240.0);
if (v > 239) {
v = 239;
} else if (v < 0) {
v = 0;
}
*pix++ = m_waterfallPalette[(int)v];
}
m_waterfallBufferPos++;
}
}
void GLSpectrum::updateHistogram(const std::vector<Real>& spectrum)
{
quint8* b = m_histogram;
int fftMulSize = 100 * m_fftSize;
if ((m_displayHistogram || m_displayMaxHold) && (m_decay != 0))
{
m_decayDivisorCount--;
if ((m_decay > 1) || (m_decayDivisorCount <= 0))
{
for (int i = 0; i < fftMulSize; i++)
{
if (*b > m_decay) {
*b = *b - m_decay;
} else {
*b = 0;
}
b++;
}
m_decayDivisorCount = m_decayDivisor;
}
}
m_currentSpectrum = &spectrum; // Store spectrum for current spectrum line display
#if 0 //def USE_SSE2
if(m_decay >= 0) { // normal
const __m128 refl = {m_referenceLevel, m_referenceLevel, m_referenceLevel, m_referenceLevel};
const __m128 power = {m_powerRange, m_powerRange, m_powerRange, m_powerRange};
const __m128 mul = {100.0f, 100.0f, 100.0f, 100.0f};
for(int i = 0; i < m_fftSize; i += 4) {
__m128 abc = _mm_loadu_ps (&spectrum[i]);
abc = _mm_sub_ps(abc, refl);
abc = _mm_mul_ps(abc, mul);
abc = _mm_div_ps(abc, power);
abc = _mm_add_ps(abc, mul);
__m128i result = _mm_cvtps_epi32(abc);
for(int j = 0; j < 4; j++) {
int v = ((int*)&result)[j];
if((v >= 0) && (v <= 99)) {
b = m_histogram + (i + j) * 100 + v;
if(*b < 220)
*b += m_histogramStroke; // was 4
else if(*b < 239)
*b += 1;
}
}
}
} else { // draw double pixels
int add = -m_decay * 4;
const __m128 refl = {m_referenceLevel, m_referenceLevel, m_referenceLevel, m_referenceLevel};
const __m128 power = {m_powerRange, m_powerRange, m_powerRange, m_powerRange};
const __m128 mul = {100.0f, 100.0f, 100.0f, 100.0f};
for(int i = 0; i < m_fftSize; i += 4) {
__m128 abc = _mm_loadu_ps (&spectrum[i]);
abc = _mm_sub_ps(abc, refl);
abc = _mm_mul_ps(abc, mul);
abc = _mm_div_ps(abc, power);
abc = _mm_add_ps(abc, mul);
__m128i result = _mm_cvtps_epi32(abc);
for(int j = 0; j < 4; j++) {
int v = ((int*)&result)[j];
if((v >= 1) && (v <= 98)) {
b = m_histogram + (i + j) * 100 + v;
if(b[-1] < 220)
b[-1] += add;
else if(b[-1] < 239)
b[-1] += 1;
if(b[0] < 220)
b[0] += add;
else if(b[0] < 239)
b[0] += 1;
if(b[1] < 220)
b[1] += add;
else if(b[1] < 239)
b[1] += 1;
} else if((v >= 0) && (v <= 99)) {
b = m_histogram + (i + j) * 100 + v;
if(*b < 220)
*b += add;
else if(*b < 239)
*b += 1;
}
}
}
}
#else
for (int i = 0; i < m_fftSize; i++)
{
int v = (int)((spectrum[i] - m_referenceLevel) * 100.0 / m_powerRange + 100.0);
if ((v >= 0) && (v <= 99))
{
b = m_histogram + i * 100 + v;
// capping to 239 as palette values are [0..239]
if (*b + m_histogramStroke <= 239) {
*b += m_histogramStroke; // was 4
} else {
*b = 239;
}
}
}
#endif
}
void GLSpectrum::initializeGL()
{
QOpenGLContext *glCurrentContext = QOpenGLContext::currentContext();
if (glCurrentContext)
{
if (QOpenGLContext::currentContext()->isValid()) {
qDebug() << "GLSpectrum::initializeGL: context:"
<< " major: " << (QOpenGLContext::currentContext()->format()).majorVersion()
<< " minor: " << (QOpenGLContext::currentContext()->format()).minorVersion()
<< " ES: " << (QOpenGLContext::currentContext()->isOpenGLES() ? "yes" : "no");
}
else {
qDebug() << "GLSpectrum::initializeGL: current context is invalid";
}
}
else
{
qCritical() << "GLSpectrum::initializeGL: no current context";
return;
}
connect(glCurrentContext, &QOpenGLContext::aboutToBeDestroyed, this, &GLSpectrum::cleanup); // TODO: when migrating to QOpenGLWidget
QOpenGLFunctions *glFunctions = QOpenGLContext::currentContext()->functions();
glFunctions->initializeOpenGLFunctions();
//glDisable(GL_DEPTH_TEST);
m_glShaderSimple.initializeGL();
m_glShaderLeftScale.initializeGL();
m_glShaderFrequencyScale.initializeGL();
m_glShaderWaterfall.initializeGL();
m_glShaderHistogram.initializeGL();
m_glShaderTextOverlay.initializeGL();
}
void GLSpectrum::resizeGL(int width, int height)
{
QMutexLocker mutexLocker(&m_mutex);
QOpenGLFunctions *glFunctions = QOpenGLContext::currentContext()->functions();
glFunctions->glViewport(0, 0, width, height);
m_changesPending = true;
}
void GLSpectrum::clearSpectrumHistogram()
{
if (!m_mutex.tryLock(2)) {
return;
}
memset(m_histogram, 0x00, 100 * m_fftSize);
m_mutex.unlock();
update();
}
void GLSpectrum::paintGL()
{
if (!m_mutex.tryLock(2)) {
return;
}
if (m_changesPending)
{
applyChanges();
m_changesPending = false;
}
if (m_fftSize <= 0)
{
m_mutex.unlock();
return;
}
QOpenGLFunctions *glFunctions = QOpenGLContext::currentContext()->functions();
glFunctions->glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glFunctions->glClear(GL_COLOR_BUFFER_BIT);
// paint waterfall
if (m_displayWaterfall)
{
{
GLfloat vtx1[] = {
0, m_invertedWaterfall ? 0.0f : 1.0f,
1, m_invertedWaterfall ? 0.0f : 1.0f,
1, m_invertedWaterfall ? 1.0f : 0.0f,
0, m_invertedWaterfall ? 1.0f : 0.0f
};
if (m_waterfallTexturePos + m_waterfallBufferPos < m_waterfallTextureHeight)
{
m_glShaderWaterfall.subTexture(0, m_waterfallTexturePos, m_fftSize, m_waterfallBufferPos, m_waterfallBuffer->scanLine(0));
m_waterfallTexturePos += m_waterfallBufferPos;
}
else
{
int breakLine = m_waterfallTextureHeight - m_waterfallTexturePos;
int linesLeft = m_waterfallTexturePos + m_waterfallBufferPos - m_waterfallTextureHeight;
m_glShaderWaterfall.subTexture(0, m_waterfallTexturePos, m_fftSize, breakLine, m_waterfallBuffer->scanLine(0));
m_glShaderWaterfall.subTexture(0, 0, m_fftSize, linesLeft, m_waterfallBuffer->scanLine(breakLine));
m_waterfallTexturePos = linesLeft;
}
m_waterfallBufferPos = 0;
float prop_y = m_waterfallTexturePos / (m_waterfallTextureHeight - 1.0);
float off = 1.0 / (m_waterfallTextureHeight - 1.0);
GLfloat tex1[] = {
0, prop_y + 1 - off,
1, prop_y + 1 - off,
1, prop_y,
0, prop_y
};
m_glShaderWaterfall.drawSurface(m_glWaterfallBoxMatrix, tex1, vtx1, 4);
}
// paint channels
if (m_mouseInside)
{
for (int i = 0; i < m_channelMarkerStates.size(); ++i)
{
ChannelMarkerState* dv = m_channelMarkerStates[i];
if (dv->m_channelMarker->getVisible()
&& (dv->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink)
&& dv->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
{
{
GLfloat q3[] {
0, 0,
1, 0,
1, 1,
0, 1,
0.5, 0,
0.5, 1,
};
QVector4D color(dv->m_channelMarker->getColor().redF(), dv->m_channelMarker->getColor().greenF(), dv->m_channelMarker->getColor().blueF(), 0.3f);
m_glShaderSimple.drawSurface(dv->m_glMatrixWaterfall, color, q3, 4);
QVector4D colorLine(0.8f, 0.8f, 0.6f, 1.0f);
m_glShaderSimple.drawSegments(dv->m_glMatrixDsbWaterfall, colorLine, &q3[8], 2);
}
}
}
}
// draw rect around
{
GLfloat q3[] {
1, 1,
0, 1,
0, 0,
1, 0
};
QVector4D color(1.0f, 1.0f, 1.0f, 0.5f);
m_glShaderSimple.drawContour(m_glWaterfallBoxMatrix, color, q3, 4);
}
}
// paint histogram
if (m_displayHistogram || m_displayMaxHold || m_displayCurrent)
{
if (m_displayHistogram)
{
{
// import new lines into the texture
quint32* pix;
quint8* bs = m_histogram;
for (int y = 0; y < 100; y++)
{
quint8* b = bs;
pix = (quint32*)m_histogramBuffer->scanLine(99 - y);
for (int x = 0; x < m_fftSize; x++)
{
*pix = m_histogramPalette[*b];
pix++;
b += 100;
}
bs++;
}
GLfloat vtx1[] = {
0, 0,
1, 0,
1, 1,
0, 1
};
GLfloat tex1[] = {
0, 0,
1, 0,
1, 1,
0, 1
};
m_glShaderHistogram.subTexture(0, 0, m_fftSize, 100, m_histogramBuffer->scanLine(0));
m_glShaderHistogram.drawSurface(m_glHistogramBoxMatrix, tex1, vtx1, 4);
}
}
// paint channels
if (m_mouseInside)
{
// Effective BW overlays
for (int i = 0; i < m_channelMarkerStates.size(); ++i)
{
ChannelMarkerState* dv = m_channelMarkerStates[i];
if (dv->m_channelMarker->getVisible()
&& (dv->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink)
&& dv->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
{
{
GLfloat q3[] {
0, 0,
1, 0,
1, 1,
0, 1,
0.5, 0,
0.5, 1
};
QVector4D color(dv->m_channelMarker->getColor().redF(), dv->m_channelMarker->getColor().greenF(), dv->m_channelMarker->getColor().blueF(), 0.3f);
m_glShaderSimple.drawSurface(dv->m_glMatrixHistogram, color, q3, 4);
QVector4D colorLine(0.8f, 0.8f, 0.6f, 1.0f);
if (dv->m_channelMarker->getSidebands() != ChannelMarker::dsb) {
q3[6] = 0.5;
}
m_glShaderSimple.drawSegments(dv->m_glMatrixDsbHistogram, colorLine, &q3[8], 2);
m_glShaderSimple.drawSegments(dv->m_glMatrixFreqScale, colorLine, q3, 2);
}
}
}
}
// draw rect around
{
GLfloat q3[] {
1, 1,
0, 1,
0, 0,
1, 0
};
QVector4D color(1.0f, 1.0f, 1.0f, 0.5f);
m_glShaderSimple.drawContour(m_glHistogramBoxMatrix, color, q3, 4);
}
}
// paint left scales (time and power)
if (m_displayWaterfall || m_displayMaxHold || m_displayCurrent || m_displayHistogram )
{
{
GLfloat vtx1[] = {
0, 1,
1, 1,
1, 0,
0, 0
};
GLfloat tex1[] = {
0, 1,
1, 1,
1, 0,
0, 0
};
m_glShaderLeftScale.drawSurface(m_glLeftScaleBoxMatrix, tex1, vtx1, 4);
}
}
// paint frequency scale
if (m_displayWaterfall || m_displayMaxHold || m_displayCurrent || m_displayHistogram )
{
{
GLfloat vtx1[] = {
0, 1,
1, 1,
1, 0,
0, 0
};
GLfloat tex1[] = {
0, 1,
1, 1,
1, 0,
0, 0
};
m_glShaderFrequencyScale.drawSurface(m_glFrequencyScaleBoxMatrix, tex1, vtx1, 4);
}
// paint channels
// Effective bandwidth overlays
for (int i = 0; i < m_channelMarkerStates.size(); ++i)
{
ChannelMarkerState* dv = m_channelMarkerStates[i];
// frequency scale channel overlay
if (dv->m_channelMarker->getVisible()
&& (dv->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink)
&& dv->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
{
{
GLfloat q3[] {
1, 0.2,
0, 0.2,
0, 0,
1, 0,
0.5, 0,
0.5, 1
};
QVector4D color(dv->m_channelMarker->getColor().redF(), dv->m_channelMarker->getColor().greenF(), dv->m_channelMarker->getColor().blueF(), 0.5f);
m_glShaderSimple.drawSurface(dv->m_glMatrixFreqScale, color, q3, 4);
if (dv->m_channelMarker->getHighlighted())
{
QVector4D colorLine(0.8f, 0.8f, 0.6f, 1.0f);
m_glShaderSimple.drawSegments(dv->m_glMatrixDsbFreqScale, colorLine, &q3[8], 2);
m_glShaderSimple.drawSegments(dv->m_glMatrixFreqScale, colorLine, &q3[4], 2);
}
}
}
}
}
// paint max hold lines on top of histogram
if (m_displayMaxHold)
{
if (m_maxHold.size() < (uint) m_fftSize) {
m_maxHold.resize(m_fftSize);
}
for (int i = 0; i < m_fftSize; i++)
{
int j;
quint8* bs = m_histogram + i * 100;
for (j = 99; j >= 0; j--)
{
if (bs[j] > 0) {
break;
}
}
// m_referenceLevel : top
// m_referenceLevel - m_powerRange : bottom
m_maxHold[i] = ((j - 99) * m_powerRange) / 99.0 + m_referenceLevel;
}
{
GLfloat *q3 = m_q3FFT.m_array;
for (int i = 0; i < m_fftSize; i++)
{
Real v = m_maxHold[i] - m_referenceLevel;
if (v >= 0) {
v = 0;
} else if (v < -m_powerRange) {
v = -m_powerRange;
}
q3[2*i] = (Real) i;
q3[2*i+1] = v;
}
QVector4D color(1.0f, 0.0f, 0.0f, (float) m_displayTraceIntensity / 100.0f);
m_glShaderSimple.drawPolyline(m_glHistogramSpectrumMatrix, color, q3, m_fftSize);
}
}
// paint current spectrum line on top of histogram
if ((m_displayCurrent) && m_currentSpectrum)
{
{
Real bottom = -m_powerRange;
GLfloat *q3 = m_q3FFT.m_array;
for (int i = 0; i < m_fftSize; i++)
{
Real v = (*m_currentSpectrum)[i] - m_referenceLevel;
if (v > 0) {
v = 0;
} else if (v < bottom) {
v = bottom;
}
q3[2*i] = (Real) i;
q3[2*i+1] = v;
}
QVector4D color(1.0f, 1.0f, 0.25f, (float) m_displayTraceIntensity / 100.0f);
m_glShaderSimple.drawPolyline(m_glHistogramSpectrumMatrix, color, q3, m_fftSize);
}
}
drawMarkers();
// paint waterfall grid
if (m_displayWaterfall && m_displayGrid)
{
const ScaleEngine::TickList* tickList;
const ScaleEngine::Tick* tick;
tickList = &m_timeScale.getTickList();
{
GLfloat *q3 = m_q3TickTime.m_array;
int effectiveTicks = 0;
for (int i= 0; i < tickList->count(); i++)
{
tick = &(*tickList)[i];
if (tick->major)
{
if (tick->textSize > 0)
{
float y = tick->pos / m_timeScale.getSize();
q3[4*effectiveTicks] = 0;
q3[4*effectiveTicks+1] = y;
q3[4*effectiveTicks+2] = 1;
q3[4*effectiveTicks+3] = y;
effectiveTicks++;
}
}
}
QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
m_glShaderSimple.drawSegments(m_glWaterfallBoxMatrix, color, q3, 2*effectiveTicks);
}
tickList = &m_frequencyScale.getTickList();
{
GLfloat *q3 = m_q3TickFrequency.m_array;
int effectiveTicks = 0;
for (int i= 0; i < tickList->count(); i++)
{
tick = &(*tickList)[i];
if (tick->major)
{
if (tick->textSize > 0)
{
float x = tick->pos / m_frequencyScale.getSize();
q3[4*effectiveTicks] = x;
q3[4*effectiveTicks+1] = 0;
q3[4*effectiveTicks+2] = x;
q3[4*effectiveTicks+3] = 1;
effectiveTicks++;
}
}
}
QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
m_glShaderSimple.drawSegments(m_glWaterfallBoxMatrix, color, q3, 2*effectiveTicks);
}
}
// paint histogram grid
if ((m_displayHistogram || m_displayMaxHold || m_displayCurrent) && (m_displayGrid))
{
const ScaleEngine::TickList* tickList;
const ScaleEngine::Tick* tick;
tickList = &m_powerScale.getTickList();
{
GLfloat *q3 = m_q3TickPower.m_array;
int effectiveTicks = 0;
for (int i= 0; i < tickList->count(); i++)
{
tick = &(*tickList)[i];
if (tick->major)
{
if (tick->textSize > 0)
{
float y = tick->pos / m_powerScale.getSize();
q3[4*effectiveTicks] = 0;
q3[4*effectiveTicks+1] = 1-y;
q3[4*effectiveTicks+2] = 1;
q3[4*effectiveTicks+3] = 1-y;
effectiveTicks++;
}
}
}
QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, color, q3, 2*effectiveTicks);
}
tickList = &m_frequencyScale.getTickList();
{
GLfloat *q3 = m_q3TickFrequency.m_array;
int effectiveTicks = 0;
for (int i= 0; i < tickList->count(); i++)
{
tick = &(*tickList)[i];
if (tick->major)
{
if (tick->textSize > 0)
{
float x = tick->pos / m_frequencyScale.getSize();
q3[4*effectiveTicks] = x;
q3[4*effectiveTicks+1] = 0;
q3[4*effectiveTicks+2] = x;
q3[4*effectiveTicks+3] = 1;
effectiveTicks++;
}
}
}
QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, color, q3, 2*effectiveTicks);
}
}
m_mutex.unlock();
}
void GLSpectrum::drawMarkers()
{
QVector4D markerColor(1.0f, 1.0f, 1.0f, 0.3f);
QVector4D markerTextColor(1.0f, 1.0f, 1.0f, 0.8f);
// paint histogram markers
if (m_histogramMarkers.size() > 0)
{
// crosshairs
for (int i = 0; i < m_histogramMarkers.size(); i++)
{
GLfloat h[] {
(float) m_histogramMarkers.at(i).m_point.x(), 0,
(float) m_histogramMarkers.at(i).m_point.x(), 1
};
m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, markerColor, h, 2);
GLfloat v[] {
0, (float) m_histogramMarkers.at(i).m_point.y(),
1, (float) m_histogramMarkers.at(i).m_point.y()
};
m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, markerColor, v, 2);
}
// text
for (int i = 0; i < m_histogramMarkers.size(); i++)
{
if (i == 0)
{
drawTextOverlay(
m_histogramMarkers.at(i).m_frequencyStr,
QColor(255, 255, 255, 192),
m_textOverlayFont,
m_histogramMarkers.at(i).m_point.x() * m_histogramRect.width(),
(m_invertedWaterfall || (m_waterfallHeight == 0)) ? m_histogramRect.height() : 0,
m_histogramMarkers.at(i).m_point.x() < 0.5f,
!m_invertedWaterfall && (m_waterfallHeight != 0),
m_histogramRect);
drawTextOverlay(
m_histogramMarkers.at(i).m_powerStr,
QColor(255, 255, 255, 192),
m_textOverlayFont,
0,
m_histogramMarkers.at(i).m_point.y() * m_histogramRect.height(),
true,
m_histogramMarkers.at(i).m_point.y() < 0.5f,
m_histogramRect);
}
else
{
drawTextOverlay(
m_histogramMarkers.at(i).m_deltaFrequencyStr,
QColor(255, 255, 255, 192),
m_textOverlayFont,
m_histogramMarkers.at(i).m_point.x() * m_histogramRect.width(),
(m_invertedWaterfall || (m_waterfallHeight == 0)) ? 0 : m_histogramRect.height(),
m_histogramMarkers.at(i).m_point.x() < 0.5f,
(m_invertedWaterfall || (m_waterfallHeight == 0)),
m_histogramRect);
drawTextOverlay(
m_histogramMarkers.at(i).m_deltaPowerStr,
QColor(255, 255, 255, 192),
m_textOverlayFont,
m_histogramRect.width(),
m_histogramMarkers.at(i).m_point.y() * m_histogramRect.height(),
false,
m_histogramMarkers.at(i).m_point.y() < 0.5f,
m_histogramRect);
}
}
}
// paint waterfall markers
if (m_waterfallMarkers.size() > 0)
{
// crosshairs
for (int i = 0; i < m_waterfallMarkers.size(); i++)
{
GLfloat h[] {
(float) m_waterfallMarkers.at(i).m_point.x(), 0,
(float) m_waterfallMarkers.at(i).m_point.x(), 1
};
m_glShaderSimple.drawSegments(m_glWaterfallBoxMatrix, markerColor, h, 2);
GLfloat v[] {
0, (float) m_waterfallMarkers.at(i).m_point.y(),
1, (float) m_waterfallMarkers.at(i).m_point.y()
};
m_glShaderSimple.drawSegments(m_glWaterfallBoxMatrix, markerColor, v, 2);
}
// text
for (int i = 0; i < m_waterfallMarkers.size(); i++)
{
if (i == 0)
{
drawTextOverlay(
m_waterfallMarkers.at(i).m_frequencyStr,
QColor(255, 255, 255, 192),
m_textOverlayFont,
m_waterfallMarkers.at(i).m_point.x() * m_waterfallRect.width(),
(!m_invertedWaterfall || (m_histogramHeight == 0)) ? m_waterfallRect.height() : 0,
m_waterfallMarkers.at(i).m_point.x() < 0.5f,
m_invertedWaterfall && (m_histogramHeight != 0),
m_waterfallRect);
drawTextOverlay(
m_waterfallMarkers.at(i).m_timeStr,
QColor(255, 255, 255, 192),
m_textOverlayFont,
0,
m_waterfallMarkers.at(i).m_point.y() * m_waterfallRect.height(),
true,
m_waterfallMarkers.at(i).m_point.y() < 0.5f,
m_waterfallRect);
}
else
{
drawTextOverlay(
m_waterfallMarkers.at(i).m_deltaFrequencyStr,
QColor(255, 255, 255, 192),
m_textOverlayFont,
m_waterfallMarkers.at(i).m_point.x() * m_waterfallRect.width(),
(!m_invertedWaterfall || (m_histogramHeight == 0)) ? 0 : m_waterfallRect.height(),
m_waterfallMarkers.at(i).m_point.x() < 0.5f,
!m_invertedWaterfall || (m_histogramHeight == 0),
m_waterfallRect);
drawTextOverlay(
m_waterfallMarkers.at(i).m_deltaTimeStr,
QColor(255, 255, 255, 192),
m_textOverlayFont,
m_waterfallRect.width(),
m_waterfallMarkers.at(i).m_point.y() * m_waterfallRect.height(),
false,
m_waterfallMarkers.at(i).m_point.y() < 0.5f,
m_waterfallRect);
}
}
}
}
void GLSpectrum::stopDrag()
{
if (m_cursorState != CSNormal)
{
if ((m_cursorState == CSSplitterMoving) || (m_cursorState == CSChannelMoving)) {
releaseMouse();
}
setCursor(Qt::ArrowCursor);
m_cursorState = CSNormal;
}
}
void GLSpectrum::applyChanges()
{
if (m_fftSize <= 0) {
return;
}
QFontMetrics fm(font());
int M = fm.horizontalAdvance("-");
m_topMargin = fm.ascent() * 1.5;
m_bottomMargin = fm.ascent() * 1.5;
int waterfallTop = 0;
m_frequencyScaleHeight = fm.height() * 3; // +1 line for marker frequency scale
int frequencyScaleTop = 0;
int histogramTop = 0;
//int m_leftMargin;
m_rightMargin = fm.horizontalAdvance("000");
// displays both histogram and waterfall
if (m_displayWaterfall && (m_displayHistogram | m_displayMaxHold | m_displayCurrent))
{
m_waterfallHeight = height() * m_waterfallShare - 1;
if (m_waterfallHeight < 0) {
m_waterfallHeight = 0;
}
if (!m_invertedWaterfall)
{
waterfallTop = m_topMargin;
frequencyScaleTop = waterfallTop + m_waterfallHeight + 1;
histogramTop = waterfallTop + m_waterfallHeight + m_frequencyScaleHeight + 1;
m_histogramHeight = height() - m_topMargin - m_waterfallHeight - m_frequencyScaleHeight - m_bottomMargin;
}
else
{
histogramTop = m_topMargin;
m_histogramHeight = height() - m_topMargin - m_waterfallHeight - m_frequencyScaleHeight - m_bottomMargin;
waterfallTop = histogramTop + m_histogramHeight + m_frequencyScaleHeight + 1;
frequencyScaleTop = histogramTop + m_histogramHeight + 1;
}
m_timeScale.setSize(m_waterfallHeight);
if (m_sampleRate > 0)
{
float scaleDiv = ((float)m_sampleRate / (float)m_timingRate) * (m_ssbSpectrum ? 2 : 1);
if (!m_invertedWaterfall) {
m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, (m_waterfallHeight * m_fftSize) / scaleDiv, 0);
} else {
m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, 0, (m_waterfallHeight * m_fftSize) / scaleDiv);
}
}
else
{
m_timeScale.setRange(Unit::Time, 0, 1);
}
m_powerScale.setSize(m_histogramHeight);
if (m_linear) {
m_powerScale.setRange(Unit::Scientific, m_referenceLevel - m_powerRange, m_referenceLevel);
} else {
m_powerScale.setRange(Unit::Decibel, m_referenceLevel - m_powerRange, m_referenceLevel);
}
m_leftMargin = m_timeScale.getScaleWidth();
if (m_powerScale.getScaleWidth() > m_leftMargin) {
m_leftMargin = m_powerScale.getScaleWidth();
}
m_leftMargin += 2 * M;
m_frequencyScale.setSize(width() - m_leftMargin - m_rightMargin);
m_frequencyScale.setRange(Unit::Frequency, m_centerFrequency - m_sampleRate / 2, m_centerFrequency + m_sampleRate / 2);
m_frequencyScale.setMakeOpposite(m_lsbDisplay);
m_glWaterfallBoxMatrix.setToIdentity();
m_glWaterfallBoxMatrix.translate(
-1.0f + ((float)(2*m_leftMargin) / (float) width()),
1.0f - ((float)(2*waterfallTop) / (float) height())
);
m_glWaterfallBoxMatrix.scale(
((float) 2 * (width() - m_leftMargin - m_rightMargin)) / (float) width(),
(float) (-2*m_waterfallHeight) / (float) height()
);
m_glHistogramBoxMatrix.setToIdentity();
m_glHistogramBoxMatrix.translate(
-1.0f + ((float)(2*m_leftMargin) / (float) width()),
1.0f - ((float)(2*histogramTop) / (float) height())
);
m_glHistogramBoxMatrix.scale(
((float) 2 * (width() - m_leftMargin - m_rightMargin)) / (float) width(),
(float) (-2*m_histogramHeight) / (float) height()
);
m_glHistogramSpectrumMatrix.setToIdentity();
m_glHistogramSpectrumMatrix.translate(
-1.0f + ((float)(2*m_leftMargin) / (float) width()),
1.0f - ((float)(2*histogramTop) / (float) height())
);
m_glHistogramSpectrumMatrix.scale(
((float) 2 * (width() - m_leftMargin - m_rightMargin)) / ((float) width() * (float)(m_fftSize - 1)),
((float) 2*m_histogramHeight / height()) / m_powerRange
);
// m_frequencyScaleRect = QRect(
// 0,
// frequencyScaleTop,
// width(),
// m_frequencyScaleHeight
// );
m_glFrequencyScaleBoxMatrix.setToIdentity();
m_glFrequencyScaleBoxMatrix.translate (
-1.0f,
1.0f - ((float) 2*frequencyScaleTop / (float) height())
);
m_glFrequencyScaleBoxMatrix.scale (
2.0f,
(float) -2*m_frequencyScaleHeight / (float) height()
);
m_glLeftScaleBoxMatrix.setToIdentity();
m_glLeftScaleBoxMatrix.translate(-1.0f, 1.0f);
m_glLeftScaleBoxMatrix.scale(
(float)(2*(m_leftMargin - 1)) / (float) width(),
-2.0f
);
}
// displays waterfall only
else if (m_displayWaterfall)
{
m_histogramHeight = 0;
histogramTop = 0;
m_bottomMargin = m_frequencyScaleHeight;
m_waterfallHeight = height() - m_topMargin - m_frequencyScaleHeight;
waterfallTop = m_topMargin;
frequencyScaleTop = m_topMargin + m_waterfallHeight + 1;
m_timeScale.setSize(m_waterfallHeight);
if (m_sampleRate > 0)
{
float scaleDiv = ((float)m_sampleRate / (float)m_timingRate) * (m_ssbSpectrum ? 2 : 1);
if (!m_invertedWaterfall) {
m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, (m_waterfallHeight * m_fftSize) / scaleDiv, 0);
} else {
m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, 0, (m_waterfallHeight * m_fftSize) / scaleDiv);
}
}
else
{
if (!m_invertedWaterfall) {
m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, 10, 0);
} else {
m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, 0, 10);
}
}
m_leftMargin = m_timeScale.getScaleWidth();
m_leftMargin += 2 * M;
m_frequencyScale.setSize(width() - m_leftMargin - m_rightMargin);
m_frequencyScale.setRange(Unit::Frequency, m_centerFrequency - m_sampleRate / 2.0, m_centerFrequency + m_sampleRate / 2.0);
m_frequencyScale.setMakeOpposite(m_lsbDisplay);
m_glWaterfallBoxMatrix.setToIdentity();
m_glWaterfallBoxMatrix.translate(
-1.0f + ((float)(2*m_leftMargin) / (float) width()),
1.0f - ((float)(2*m_topMargin) / (float) height())
);
m_glWaterfallBoxMatrix.scale(
((float) 2 * (width() - m_leftMargin - m_rightMargin)) / (float) width(),
(float) (-2*m_waterfallHeight) / (float) height()
);
// m_frequencyScaleRect = QRect(
// 0,
// frequencyScaleTop,
// width(),
// m_frequencyScaleHeight
// );
m_glFrequencyScaleBoxMatrix.setToIdentity();
m_glFrequencyScaleBoxMatrix.translate (
-1.0f,
1.0f - ((float) 2*frequencyScaleTop / (float) height())
);
m_glFrequencyScaleBoxMatrix.scale (
2.0f,
(float) -2*m_frequencyScaleHeight / (float) height()
);
m_glLeftScaleBoxMatrix.setToIdentity();
m_glLeftScaleBoxMatrix.translate(-1.0f, 1.0f);
m_glLeftScaleBoxMatrix.scale(
(float)(2*(m_leftMargin - 1)) / (float) width(),
-2.0f
);
}
// displays histogram only
else if (m_displayHistogram || m_displayMaxHold || m_displayCurrent)
{
m_bottomMargin = m_frequencyScaleHeight;
frequencyScaleTop = height() - m_bottomMargin;
histogramTop = m_topMargin - 1;
m_waterfallHeight = 0;
m_histogramHeight = height() - m_topMargin - m_frequencyScaleHeight;
m_powerScale.setSize(m_histogramHeight);
m_powerScale.setRange(Unit::Decibel, m_referenceLevel - m_powerRange, m_referenceLevel);
m_leftMargin = m_powerScale.getScaleWidth();
m_leftMargin += 2 * M;
m_frequencyScale.setSize(width() - m_leftMargin - m_rightMargin);
m_frequencyScale.setRange(Unit::Frequency, m_centerFrequency - m_sampleRate / 2, m_centerFrequency + m_sampleRate / 2);
m_frequencyScale.setMakeOpposite(m_lsbDisplay);
m_glHistogramSpectrumMatrix.setToIdentity();
m_glHistogramSpectrumMatrix.translate(
-1.0f + ((float)(2*m_leftMargin) / (float) width()),
1.0f - ((float)(2*histogramTop) / (float) height())
);
m_glHistogramSpectrumMatrix.scale(
((float) 2 * (width() - m_leftMargin - m_rightMargin)) / ((float) width() * (float)(m_fftSize - 1)),
((float) 2*(height() - m_topMargin - m_frequencyScaleHeight)) / (height()*m_powerRange)
);
m_glHistogramBoxMatrix.setToIdentity();
m_glHistogramBoxMatrix.translate(
-1.0f + ((float)(2*m_leftMargin) / (float) width()),
1.0f - ((float)(2*histogramTop) / (float) height())
);
m_glHistogramBoxMatrix.scale(
((float) 2 * (width() - m_leftMargin - m_rightMargin)) / (float) width(),
(float) (-2*(height() - m_topMargin - m_frequencyScaleHeight)) / (float) height()
);
// m_frequencyScaleRect = QRect(
// 0,
// frequencyScaleTop,
// width(),
// m_frequencyScaleHeight
// );
m_glFrequencyScaleBoxMatrix.setToIdentity();
m_glFrequencyScaleBoxMatrix.translate (
-1.0f,
1.0f - ((float) 2*frequencyScaleTop / (float) height())
);
m_glFrequencyScaleBoxMatrix.scale (
2.0f,
(float) -2*m_frequencyScaleHeight / (float) height()
);
m_glLeftScaleBoxMatrix.setToIdentity();
m_glLeftScaleBoxMatrix.translate(-1.0f, 1.0f);
m_glLeftScaleBoxMatrix.scale(
(float)(2*(m_leftMargin - 1)) / (float) width(),
-2.0f
);
}
else
{
m_leftMargin = 2;
m_waterfallHeight = 0;
}
// bounding boxes
m_frequencyScaleRect = QRect(
0,
frequencyScaleTop,
width(),
m_frequencyScaleHeight
);
if ((m_invertedWaterfall) || (m_waterfallHeight == 0))
{
m_histogramRect = QRectF(
(float) m_leftMargin / (float) width(),
(float) m_topMargin / (float) height(),
(float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
(float) (m_histogramHeight) / (float) height()
);
}
else
{
m_histogramRect = QRectF(
(float) m_leftMargin / (float) width(),
(float) (waterfallTop + m_waterfallHeight + m_frequencyScaleHeight) / (float) height(),
(float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
(float) m_histogramHeight / (float) height()
);
}
if (!m_invertedWaterfall || (m_histogramHeight == 0))
{
m_waterfallRect = QRectF(
(float) m_leftMargin / (float) width(),
(float) m_topMargin / (float) height(),
(float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
(float) m_waterfallHeight / (float) height()
);
}
else
{
m_waterfallRect = QRectF(
(float) m_leftMargin / (float) width(),
(float) (m_topMargin + m_histogramHeight + m_frequencyScaleHeight) / (float) height(),
(float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
(float) (m_waterfallHeight) / (float) height()
);
}
// channel overlays
for (int i = 0; i < m_channelMarkerStates.size(); ++i)
{
ChannelMarkerState* dv = m_channelMarkerStates[i];
qreal xc, pw, nw, dsbw;
ChannelMarker::sidebands_t sidebands = dv->m_channelMarker->getSidebands();
xc = m_centerFrequency + dv->m_channelMarker->getCenterFrequency(); // marker center frequency
dsbw = dv->m_channelMarker->getBandwidth();
if (sidebands == ChannelMarker::usb) {
nw = dv->m_channelMarker->getLowCutoff(); // negative bandwidth
int bw = dv->m_channelMarker->getBandwidth() / 2;
pw = (qreal) bw; // positive bandwidth
} else if (sidebands == ChannelMarker::lsb) {
pw = dv->m_channelMarker->getLowCutoff();
int bw = dv->m_channelMarker->getBandwidth() / 2;
nw = (qreal) bw;
} else if (sidebands == ChannelMarker::vusb) {
nw = -dv->m_channelMarker->getOppositeBandwidth(); // negative bandwidth
pw = dv->m_channelMarker->getBandwidth(); // positive bandwidth
} else if (sidebands == ChannelMarker::vlsb) {
pw = dv->m_channelMarker->getOppositeBandwidth(); // positive bandwidth
nw = -dv->m_channelMarker->getBandwidth(); // negative bandwidth
} else {
pw = dsbw / 2;
nw = -pw;
}
// draw the DSB rectangle
QMatrix4x4 glMatrixDsb;
glMatrixDsb.setToIdentity();
glMatrixDsb.translate(
-1.0f + 2.0f * ((m_leftMargin + m_frequencyScale.getPosFromValue(xc - (dsbw/2))) / (float) width()),
1.0f
);
glMatrixDsb.scale(
2.0f * (dsbw / (float)m_sampleRate),
-2.0f
);
dv->m_glMatrixDsbWaterfall = glMatrixDsb;
dv->m_glMatrixDsbWaterfall.translate(
0.0f,
(float) waterfallTop / (float) height()
);
dv->m_glMatrixDsbWaterfall.scale(
(float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
(float) m_waterfallHeight / (float) height()
);
dv->m_glMatrixDsbHistogram = glMatrixDsb;
dv->m_glMatrixDsbHistogram.translate(
0.0f,
(float) histogramTop / (float) height()
);
dv->m_glMatrixDsbHistogram.scale(
(float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
(float) m_histogramHeight / (float) height()
);
dv->m_glMatrixDsbFreqScale = glMatrixDsb;
dv->m_glMatrixDsbFreqScale.translate(
0.0f,
(float) frequencyScaleTop / (float) height()
);
dv->m_glMatrixDsbFreqScale.scale(
(float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
(float) m_frequencyScaleHeight / (float) height()
);
// draw the effective BW rectangle
QMatrix4x4 glMatrix;
glMatrix.setToIdentity();
glMatrix.translate(
-1.0f + 2.0f * ((m_leftMargin + m_frequencyScale.getPosFromValue(xc + nw)) / (float) width()),
1.0f
);
glMatrix.scale(
2.0f * ((pw-nw) / (float)m_sampleRate),
-2.0f
);
dv->m_glMatrixWaterfall = glMatrix;
dv->m_glMatrixWaterfall.translate(
0.0f,
(float) waterfallTop / (float) height()
);
dv->m_glMatrixWaterfall.scale(
(float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
(float) m_waterfallHeight / (float) height()
);
dv->m_glMatrixHistogram = glMatrix;
dv->m_glMatrixHistogram.translate(
0.0f,
(float) histogramTop / (float) height()
);
dv->m_glMatrixHistogram.scale(
(float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
(float) m_histogramHeight / (float) height()
);
dv->m_glMatrixFreqScale = glMatrix;
dv->m_glMatrixFreqScale.translate(
0.0f,
(float) frequencyScaleTop / (float) height()
);
dv->m_glMatrixFreqScale.scale(
(float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
(float) m_frequencyScaleHeight / (float) height()
);
/*
dv->m_glRect.setRect(
m_frequencyScale.getPosFromValue(m_centerFrequency + dv->m_channelMarker->getCenterFrequency() - dv->m_channelMarker->getBandwidth() / 2) / (float)(width() - m_leftMargin - m_rightMargin),
0,
(dv->m_channelMarker->getBandwidth() / (float)m_sampleRate),
1);
*/
if (m_displayHistogram || m_displayMaxHold || m_displayCurrent || m_displayWaterfall)
{
dv->m_rect.setRect(m_frequencyScale.getPosFromValue(xc) + m_leftMargin - 1,
m_topMargin,
5,
height() - m_topMargin - m_bottomMargin);
}
/*
if(m_displayHistogram || m_displayMaxHold || m_displayWaterfall) {
dv->m_rect.setRect(m_frequencyScale.getPosFromValue(m_centerFrequency + dv->m_channelMarker->getCenterFrequency()) + m_leftMargin - 1,
m_topMargin,
5,
height() - m_topMargin - m_bottomMargin);
}
*/
}
// prepare left scales (time and power)
{
m_leftMarginPixmap = QPixmap(m_leftMargin - 1, height());
m_leftMarginPixmap.fill(Qt::black);
{
QPainter painter(&m_leftMarginPixmap);
painter.setPen(QColor(0xf0, 0xf0, 0xff));
painter.setFont(font());
const ScaleEngine::TickList* tickList;
const ScaleEngine::Tick* tick;
if (m_displayWaterfall) {
tickList = &m_timeScale.getTickList();
for (int i = 0; i < tickList->count(); i++) {
tick = &(*tickList)[i];
if (tick->major) {
if (tick->textSize > 0)
painter.drawText(QPointF(m_leftMargin - M - tick->textSize, waterfallTop + fm.ascent() + tick->textPos), tick->text);
}
}
}
if (m_displayHistogram || m_displayMaxHold || m_displayCurrent) {
tickList = &m_powerScale.getTickList();
for (int i = 0; i < tickList->count(); i++) {
tick = &(*tickList)[i];
if (tick->major) {
if (tick->textSize > 0)
painter.drawText(QPointF(m_leftMargin - M - tick->textSize, histogramTop + m_histogramHeight - tick->textPos - 1), tick->text);
}
}
}
}
m_glShaderLeftScale.initTexture(m_leftMarginPixmap.toImage());
}
// prepare frequency scale
if (m_displayWaterfall || m_displayHistogram || m_displayMaxHold || m_displayCurrent){
m_frequencyPixmap = QPixmap(width(), m_frequencyScaleHeight);
m_frequencyPixmap.fill(Qt::transparent);
{
QPainter painter(&m_frequencyPixmap);
painter.setPen(Qt::NoPen);
painter.setBrush(Qt::black);
painter.setBrush(Qt::transparent);
painter.drawRect(m_leftMargin, 0, width() - m_leftMargin, m_frequencyScaleHeight);
painter.setPen(QColor(0xf0, 0xf0, 0xff));
painter.setFont(font());
const ScaleEngine::TickList* tickList = &m_frequencyScale.getTickList();
const ScaleEngine::Tick* tick;
for (int i = 0; i < tickList->count(); i++) {
tick = &(*tickList)[i];
if (tick->major) {
if (tick->textSize > 0)
painter.drawText(QPointF(m_leftMargin + tick->textPos, fm.height() + fm.ascent() / 2 - 1), tick->text);
}
}
// Frequency overlay on highlighted marker
for (int i = 0; i < m_channelMarkerStates.size(); ++i)
{
ChannelMarkerState* dv = m_channelMarkerStates[i];
if (dv->m_channelMarker->getHighlighted()
&& (dv->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink)
&& dv->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
{
qreal xc;
int shift;
//ChannelMarker::sidebands_t sidebands = dv->m_channelMarker->getSidebands();
xc = m_centerFrequency + dv->m_channelMarker->getCenterFrequency(); // marker center frequency
QString ftext;
switch (dv->m_channelMarker->getFrequencyScaleDisplayType())
{
case ChannelMarker::FScaleDisplay_freq:
ftext = QString::number((m_centerFrequency + dv->m_channelMarker->getCenterFrequency())/1e6, 'f', 6);
break;
case ChannelMarker::FScaleDisplay_title:
ftext = dv->m_channelMarker->getTitle();
break;
case ChannelMarker::FScaleDisplay_addressSend:
ftext = dv->m_channelMarker->getDisplayAddressSend();
break;
case ChannelMarker::FScaleDisplay_addressReceive:
ftext = dv->m_channelMarker->getDisplayAddressReceive();
break;
default:
ftext = QString::number((m_centerFrequency + dv->m_channelMarker->getCenterFrequency())/1e6, 'f', 6);
break;
}
if (dv->m_channelMarker->getCenterFrequency() < 0) { // left half of scale
ftext = " " + ftext;
shift = 0;
} else { // right half of scale
ftext = ftext + " ";
shift = - fm.horizontalAdvance(ftext);
}
painter.drawText(QPointF(m_leftMargin + m_frequencyScale.getPosFromValue(xc) + shift, 2*fm.height() + fm.ascent() / 2 - 1), ftext);
}
}
}
m_glShaderFrequencyScale.initTexture(m_frequencyPixmap.toImage());
}
bool fftSizeChanged = true;
if (m_waterfallBuffer) {
fftSizeChanged = m_waterfallBuffer->width() != m_fftSize;
}
bool windowSizeChanged = m_waterfallTextureHeight != m_waterfallHeight;
if (fftSizeChanged || windowSizeChanged)
{
if (m_waterfallBuffer) {
delete m_waterfallBuffer;
}
m_waterfallBuffer = new QImage(m_fftSize, m_waterfallHeight, QImage::Format_ARGB32);
m_waterfallBuffer->fill(qRgb(0x00, 0x00, 0x00));
m_glShaderWaterfall.initTexture(*m_waterfallBuffer);
m_waterfallBufferPos = 0;
}
if (fftSizeChanged)
{
if (m_histogramBuffer)
{
delete m_histogramBuffer;
m_histogramBuffer = nullptr;
}
if (m_histogram) {
delete[] m_histogram;
m_histogram = nullptr;
}
m_histogramBuffer = new QImage(m_fftSize, 100, QImage::Format_RGB32);
m_histogramBuffer->fill(qRgb(0x00, 0x00, 0x00));
m_glShaderHistogram.initTexture(*m_histogramBuffer, QOpenGLTexture::ClampToEdge);
m_histogram = new quint8[100 * m_fftSize];
memset(m_histogram, 0x00, 100 * m_fftSize);
m_q3FFT.allocate(2*m_fftSize);
}
if (fftSizeChanged || windowSizeChanged)
{
m_waterfallTextureHeight = m_waterfallHeight;
m_waterfallTexturePos = 0;
}
m_q3TickTime.allocate(4*m_timeScale.getTickList().count());
m_q3TickFrequency.allocate(4*m_frequencyScale.getTickList().count());
m_q3TickPower.allocate(4*m_powerScale.getTickList().count());
}
void GLSpectrum::mouseMoveEvent(QMouseEvent* event)
{
if (m_displayWaterfall || m_displayHistogram || m_displayMaxHold || m_displayCurrent)
{
if (m_frequencyScaleRect.contains(event->pos()))
{
if (m_cursorState == CSNormal)
{
setCursor(Qt::SizeVerCursor);
m_cursorState = CSSplitter;
return;
}
}
else
{
if (m_cursorState == CSSplitter)
{
setCursor(Qt::ArrowCursor);
m_cursorState = CSNormal;
return;
}
}
}
if (m_cursorState == CSSplitterMoving)
{
QMutexLocker mutexLocker(&m_mutex);
float newShare;
if (!m_invertedWaterfall) {
newShare = (float) (event->y() - m_frequencyScaleRect.height()) / (float) height();
} else {
newShare = 1.0 - (float) (event->y() + m_frequencyScaleRect.height()) / (float) height();
}
if (newShare < 0.1) {
newShare = 0.1f;
} else if (newShare > 0.8) {
newShare = 0.8f;
}
m_waterfallShare = newShare;
m_changesPending = true;
if (m_messageQueueToGUI) {
m_messageQueueToGUI->push(new MsgReportWaterfallShare(m_waterfallShare));
}
update();
return;
}
else if (m_cursorState == CSChannelMoving)
{
Real freq = m_frequencyScale.getValueFromPos(event->x() - m_leftMarginPixmap.width() - 1) - m_centerFrequency;
if (m_channelMarkerStates[m_cursorChannel]->m_channelMarker->getMovable()
&& (m_channelMarkerStates[m_cursorChannel]->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink)
&& m_channelMarkerStates[m_cursorChannel]->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
{
m_channelMarkerStates[m_cursorChannel]->m_channelMarker->setCenterFrequencyByCursor(freq);
channelMarkerChanged();
}
}
if (m_displayWaterfall || m_displayHistogram || m_displayMaxHold || m_displayCurrent)
{
for (int i = 0; i < m_channelMarkerStates.size(); ++i)
{
if ((m_channelMarkerStates[i]->m_channelMarker->getSourceOrSinkStream() != m_displaySourceOrSink)
|| !m_channelMarkerStates[i]->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
{
continue;
}
if (m_channelMarkerStates[i]->m_rect.contains(event->pos()))
{
if (m_cursorState == CSNormal)
{
setCursor(Qt::SizeHorCursor);
m_cursorState = CSChannel;
m_cursorChannel = i;
m_channelMarkerStates[i]->m_channelMarker->setHighlightedByCursor(true);
channelMarkerChanged();
return;
}
else if (m_cursorState == CSChannel)
{
return;
}
}
else if (m_channelMarkerStates[i]->m_channelMarker->getHighlighted())
{
m_channelMarkerStates[i]->m_channelMarker->setHighlightedByCursor(false);
channelMarkerChanged();
}
}
}
if (m_cursorState == CSChannel)
{
setCursor(Qt::ArrowCursor);
m_cursorState = CSNormal;
return;
}
}
void GLSpectrum::mousePressEvent(QMouseEvent* event)
{
const QPointF& ep = event->localPos();
if (event->button() == Qt::RightButton)
{
QPointF pHis = ep;
bool doUpdate = false;
pHis.rx() = (ep.x()/width() - m_histogramRect.left()) / m_histogramRect.width();
pHis.ry() = (ep.y()/height() - m_histogramRect.top()) / m_histogramRect.height();
if (event->modifiers() & Qt::ShiftModifier)
{
if ((pHis.x() >= 0) && (pHis.x() <= 1) && (pHis.y() >= 0) && (pHis.y() <= 1))
{
m_histogramMarkers.clear();
doUpdate = true;
}
}
else
{
if ((m_histogramMarkers.size() > 0) && (pHis.x() >= 0) && (pHis.x() <= 1) && (pHis.y() >= 0) && (pHis.y() <= 1))
{
m_histogramMarkers.pop_back();
doUpdate = true;
}
}
QPointF pWat = ep;
pWat.rx() = (ep.x()/width() - m_waterfallRect.left()) / m_waterfallRect.width();
pWat.ry() = (ep.y()/height() - m_waterfallRect.top()) / m_waterfallRect.height();
if (event->modifiers() & Qt::ShiftModifier)
{
if ((pWat.x() >= 0) && (pWat.x() <= 1) && (pWat.y() >= 0) && (pWat.y() <= 1))
{
m_waterfallMarkers.clear();
doUpdate = true;
}
}
else
{
if ((m_waterfallMarkers.size() > 0) && (pWat.x() >= 0) && (pWat.x() <= 1) && (pWat.y() >= 0) && (pWat.y() <= 1))
{
m_waterfallMarkers.pop_back();
doUpdate = true;
}
}
if (doUpdate) {
update();
}
}
else if (event->button() == Qt::LeftButton)
{
if (event->modifiers() & Qt::ShiftModifier)
{
QPointF pHis = ep;
bool doUpdate = false;
pHis.rx() = (ep.x()/width() - m_histogramRect.left()) / m_histogramRect.width();
pHis.ry() = (ep.y()/height() - m_histogramRect.top()) / m_histogramRect.height();
float frequency = m_frequencyScale.getRangeMin() + pHis.x()*m_frequencyScale.getRange();
float power = m_powerScale.getRangeMax() - pHis.y()*m_powerScale.getRange();
if ((pHis.x() >= 0) && (pHis.x() <= 1) && (pHis.y() >= 0) && (pHis.y() <= 1))
{
if (m_histogramMarkers.size() < 2)
{
m_histogramMarkers.push_back(HistogramMarker());
m_histogramMarkers.back().m_point = pHis;
m_histogramMarkers.back().m_frequency = frequency;
m_histogramMarkers.back().m_frequencyStr = displayScaled(
frequency,
'f',
getPrecision(m_centerFrequency/m_sampleRate),
false);
m_histogramMarkers.back().m_power = power;
m_histogramMarkers.back().m_powerStr = displayScaledF(
power,
m_linear ? 'e' : 'f',
m_linear ? 3 : 1,
false);
if (m_histogramMarkers.size() > 1)
{
int64_t deltaFrequency = frequency - m_histogramMarkers.at(0).m_frequency;
m_histogramMarkers.back().m_deltaFrequencyStr = displayScaled(
deltaFrequency,
'f',
getPrecision(deltaFrequency/m_sampleRate),
true);
m_histogramMarkers.back().m_deltaPowerStr = displayScaledF(
power - m_histogramMarkers.at(0).m_power,
m_linear ? 'e' : 'f',
m_linear ? 3 : 1,
false);
}
doUpdate = true;
}
}
QPointF pWat = ep;
pWat.rx() = (ep.x()/width() - m_waterfallRect.left()) / m_waterfallRect.width();
pWat.ry() = (ep.y()/height() - m_waterfallRect.top()) / m_waterfallRect.height();
frequency = m_frequencyScale.getRangeMin() + pWat.x()*m_frequencyScale.getRange();
float time = m_timeScale.getRangeMin() + pWat.y()*m_timeScale.getRange();
if ((pWat.x() >= 0) && (pWat.x() <= 1) && (pWat.y() >= 0) && (pWat.y() <= 1))
{
if (m_waterfallMarkers.size() < 2)
{
m_waterfallMarkers.push_back(WaterfallMarker());
m_waterfallMarkers.back().m_point = pWat;
m_waterfallMarkers.back().m_frequency = frequency;
m_waterfallMarkers.back().m_frequencyStr = displayScaled(
frequency,
'f',
getPrecision(m_centerFrequency/m_sampleRate),
false);
m_waterfallMarkers.back().m_time = time;
m_waterfallMarkers.back().m_timeStr = displayScaledF(
time,
'f',
3,
true);
if (m_waterfallMarkers.size() > 1)
{
int64_t deltaFrequency = frequency - m_waterfallMarkers.at(0).m_frequency;
m_waterfallMarkers.back().m_deltaFrequencyStr = displayScaled(
deltaFrequency,
'f',
getPrecision(deltaFrequency/m_sampleRate),
true);
m_waterfallMarkers.back().m_deltaTimeStr = displayScaledF(
time - m_waterfallMarkers.at(0).m_time,
'f',
3,
true);
}
doUpdate = true;
}
}
if (doUpdate) {
update();
}
}
if (m_cursorState == CSSplitter)
{
grabMouse();
m_cursorState = CSSplitterMoving;
return;
}
else if (m_cursorState == CSChannel)
{
grabMouse();
m_cursorState = CSChannelMoving;
return;
}
else if ((m_cursorState == CSNormal) && (m_channelMarkerStates.size() == 1) && !(event->modifiers() & Qt::ShiftModifier))
{
grabMouse();
setCursor(Qt::SizeHorCursor);
m_cursorState = CSChannelMoving;
m_cursorChannel = 0;
Real freq = m_frequencyScale.getValueFromPos(event->x() - m_leftMarginPixmap.width() - 1) - m_centerFrequency;
if (m_channelMarkerStates[m_cursorChannel]->m_channelMarker->getMovable()
&& (m_channelMarkerStates[m_cursorChannel]->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink)
&& m_channelMarkerStates[m_cursorChannel]->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
{
m_channelMarkerStates[m_cursorChannel]->m_channelMarker->setCenterFrequencyByCursor(freq);
channelMarkerChanged();
}
return;
}
}
}
void GLSpectrum::mouseReleaseEvent(QMouseEvent*)
{
if (m_cursorState == CSSplitterMoving)
{
releaseMouse();
m_cursorState = CSSplitter;
}
else if (m_cursorState == CSChannelMoving)
{
releaseMouse();
m_cursorState = CSChannel;
}
}
void GLSpectrum::wheelEvent(QWheelEvent *event)
{
int mul;
if (event->modifiers() & Qt::ShiftModifier) {
mul = 100;
} else if (event->modifiers() & Qt::ControlModifier) {
mul = 10;
} else {
mul = 1;
}
for (int i = 0; i < m_channelMarkerStates.size(); ++i)
{
if ((m_channelMarkerStates[i]->m_channelMarker->getSourceOrSinkStream() != m_displaySourceOrSink)
|| !m_channelMarkerStates[i]->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
{
continue;
}
if (m_channelMarkerStates[i]->m_rect.contains(event->pos()))
{
int freq = m_channelMarkerStates[i]->m_channelMarker->getCenterFrequency();
if (event->delta() > 0) {
freq += 10 * mul;
} else if (event->delta() < 0) {
freq -= 10 * mul;
}
// calculate scale relative cursor position for new frequency
float x_pos = m_frequencyScale.getPosFromValue(m_centerFrequency + freq);
if ((x_pos >= 0.0) && (x_pos < m_frequencyScale.getSize())) // cursor must be in scale
{
m_channelMarkerStates[i]->m_channelMarker->setCenterFrequencyByCursor(freq);
m_channelMarkerStates[i]->m_channelMarker->setCenterFrequency(freq);
// cursor follow-up
int xd = x_pos + m_leftMargin;
QCursor c = cursor();
QPoint cp_a = c.pos();
QPoint cp_w = mapFromGlobal(cp_a);
cp_w.setX(xd);
cp_a = mapToGlobal(cp_w);
c.setPos(cp_a);
setCursor(c);
}
}
}
}
void GLSpectrum::enterEvent(QEvent* event)
{
m_mouseInside = true;
update();
QGLWidget::enterEvent(event);
}
void GLSpectrum::leaveEvent(QEvent* event)
{
m_mouseInside = false;
update();
QGLWidget::enterEvent(event);
}
void GLSpectrum::tick()
{
if (m_displayChanged)
{
m_displayChanged = false;
update();
}
}
void GLSpectrum::channelMarkerChanged()
{
QMutexLocker mutexLocker(&m_mutex);
m_changesPending = true;
update();
}
void GLSpectrum::channelMarkerDestroyed(QObject* object)
{
removeChannelMarker((ChannelMarker*)object);
}
void GLSpectrum::setWaterfallShare(Real waterfallShare)
{
QMutexLocker mutexLocker(&m_mutex);
if (waterfallShare < 0.1f) {
m_waterfallShare = 0.1f;
} else if (waterfallShare > 0.8f) {
m_waterfallShare = 0.8f;
} else {
m_waterfallShare = waterfallShare;
}
m_changesPending = true;
}
void GLSpectrum::connectTimer(const QTimer& timer)
{
qDebug() << "GLSpectrum::connectTimer";
disconnect(&m_timer, SIGNAL(timeout()), this, SLOT(tick()));
connect(&timer, SIGNAL(timeout()), this, SLOT(tick()));
m_masterTimer = &timer;
m_timer.stop();
}
void GLSpectrum::disconnectTimer()
{
qDebug() << "GLScope::disconnectTimer";
if (m_masterTimer) {
disconnect(m_masterTimer, SIGNAL(timeout()), this, SLOT(tick()));
}
m_masterTimer = nullptr;
}
void GLSpectrum::cleanup()
{
//makeCurrent();
m_glShaderSimple.cleanup();
m_glShaderFrequencyScale.cleanup();
m_glShaderHistogram.cleanup();
m_glShaderLeftScale.cleanup();
m_glShaderWaterfall.cleanup();
m_glShaderTextOverlay.cleanup();
//doneCurrent();
}
QString GLSpectrum::displayScaled(int64_t value, char type, int precision, bool showMult)
{
int64_t posValue = (value < 0) ? -value : value;
if (posValue < 1000) {
return tr("%1").arg(QString::number(value, type, precision));
} else if (posValue < 1000000) {
return tr("%1%2").arg(QString::number(value / 1000.0, type, precision)).arg(showMult ? "k" : "");
} else if (posValue < 1000000000) {
return tr("%1%2").arg(QString::number(value / 1000000.0, type, precision)).arg(showMult ? "M" : "");
} else if (posValue < 1000000000000) {
return tr("%1%2").arg(QString::number(value / 1000000000.0, type, precision)).arg(showMult ? "G" : "");
} else {
return tr("%1").arg(QString::number(value, 'e', precision));
}
}
QString GLSpectrum::displayScaledF(float value, char type, int precision, bool showMult)
{
float posValue = (value < 0) ? -value : value;
if (posValue == 0)
{
return tr("%1").arg(QString::number(value, 'f', precision));
}
else if (posValue < 1)
{
if (posValue > 0.001) {
return tr("%1%2").arg(QString::number(value * 1000.0, type, precision)).arg(showMult ? "m" : "");
} else if (posValue > 0.000001) {
return tr("%1%2").arg(QString::number(value * 1000000.0, type, precision)).arg(showMult ? "u" : "");
} else if (posValue > 1e-9) {
return tr("%1%2").arg(QString::number(value * 1e9, type, precision)).arg(showMult ? "n" : "");
} else if (posValue > 1e-12) {
return tr("%1%2").arg(QString::number(value * 1e12, type, precision)).arg(showMult ? "p" : "");
} else {
return tr("%1").arg(QString::number(value, 'e', precision));
}
}
else
{
if (posValue < 1000) {
return tr("%1").arg(QString::number(value, type, precision));
} else if (posValue < 1000000) {
return tr("%1%2").arg(QString::number(value / 1000.0, type, precision)).arg(showMult ? "k" : "");
} else if (posValue < 1000000000) {
return tr("%1%2").arg(QString::number(value / 1000000.0, type, precision)).arg(showMult ? "M" : "");
} else if (posValue < 1000000000000) {
return tr("%1%2").arg(QString::number(value / 1000000000.0, type, precision)).arg(showMult ? "G" : "");
} else {
return tr("%1").arg(QString::number(value, 'e', precision));
}
}
}
int GLSpectrum::getPrecision(int value)
{
int posValue = (value < 0) ? -value : value;
if (posValue < 1000) {
return 3;
} else if (posValue < 10000) {
return 4;
} else if (posValue < 100000) {
return 5;
} else {
return 6;
}
}
void GLSpectrum::drawTextOverlay(
const QString &text,
const QColor &color,
const QFont& font,
float shiftX,
float shiftY,
bool leftHalf,
bool topHalf,
const QRectF &glRect)
{
if (text.isEmpty()) {
return;
}
QFontMetricsF metrics(font);
QRectF textRect = metrics.boundingRect(text);
QRectF overlayRect(0, 0, textRect.width() * 1.05f + 4.0f, textRect.height());
QPixmap channelOverlayPixmap = QPixmap(overlayRect.width(), overlayRect.height());
channelOverlayPixmap.fill(Qt::transparent);
QPainter painter(&channelOverlayPixmap);
painter.setRenderHints(QPainter::Antialiasing | QPainter::TextAntialiasing, false);
painter.fillRect(overlayRect, QColor(0, 0, 0, 0x80));
QColor textColor(color);
textColor.setAlpha(0xC0);
painter.setPen(textColor);
painter.setFont(font);
painter.drawText(QPointF(2.0f, overlayRect.height() - 4.0f), text);
painter.end();
m_glShaderTextOverlay.initTexture(channelOverlayPixmap.toImage());
{
GLfloat vtx1[] = {
0, 1,
1, 1,
1, 0,
0, 0};
GLfloat tex1[] = {
0, 1,
1, 1,
1, 0,
0, 0};
// float shiftX = glRect.width() - ((overlayRect.width() + 4.0f) / width());
// float shiftY = 4.0f / height();
float rectX = glRect.x() + shiftX - (leftHalf ? 0 : (overlayRect.width()+1)/width());
float rectY = glRect.y() + shiftY + (4.0f / height()) - (topHalf ? 0 : (overlayRect.height()+5)/height());
float rectW = overlayRect.width() / (float) width();
float rectH = overlayRect.height() / (float) height();
QMatrix4x4 mat;
mat.setToIdentity();
mat.translate(-1.0f + 2.0f * rectX, 1.0f - 2.0f * rectY);
mat.scale(2.0f * rectW, -2.0f * rectH);
m_glShaderTextOverlay.drawSurface(mat, tex1, vtx1, 4);
}
}