mirror of
https://github.com/f4exb/sdrangel.git
synced 2024-11-08 17:46:03 -05:00
230 lines
7.9 KiB
C++
230 lines
7.9 KiB
C++
///////////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
|
|
// Copyright (C) 2023 Jon Beniston, M7RCE //
|
|
// //
|
|
// This program is free software; you can redistribute it and/or modify //
|
|
// it under the terms of the GNU General Public License as published by //
|
|
// the Free Software Foundation as version 3 of the License, or //
|
|
// (at your option) any later version. //
|
|
// //
|
|
// This program is distributed in the hope that it will be useful, //
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
|
// GNU General Public License V3 for more details. //
|
|
// //
|
|
// You should have received a copy of the GNU General Public License //
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include <QDebug>
|
|
|
|
#include <complex.h>
|
|
|
|
#include "dsp/dspengine.h"
|
|
#include "dsp/datafifo.h"
|
|
#include "dsp/scopevis.h"
|
|
#include "util/db.h"
|
|
#include "util/stepfunctions.h"
|
|
#include "maincore.h"
|
|
|
|
#include "heatmap.h"
|
|
#include "heatmapsink.h"
|
|
|
|
HeatMapSink::HeatMapSink(HeatMap *heatMap) :
|
|
m_scopeSink(nullptr),
|
|
m_heatMap(heatMap),
|
|
m_channelSampleRate(10000),
|
|
m_channelFrequencyOffset(0),
|
|
m_magsq(0.0),
|
|
m_magsqSum(0.0),
|
|
m_magsqPeak(0.0),
|
|
m_magsqCount(0),
|
|
m_messageQueueToChannel(nullptr),
|
|
m_sampleBufferSize(1000),
|
|
m_sampleBufferIndex(0)
|
|
{
|
|
resetMagLevels();
|
|
m_sampleBuffer.resize(m_sampleBufferSize);
|
|
|
|
applySettings(m_settings, true);
|
|
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
|
|
}
|
|
|
|
HeatMapSink::~HeatMapSink()
|
|
{
|
|
}
|
|
|
|
void HeatMapSink::sampleToScope(Complex sample)
|
|
{
|
|
if (m_scopeSink)
|
|
{
|
|
Real r = std::real(sample) * SDR_RX_SCALEF;
|
|
Real i = std::imag(sample) * SDR_RX_SCALEF;
|
|
m_sampleBuffer[m_sampleBufferIndex++] = Sample(r, i);
|
|
|
|
if (m_sampleBufferIndex >= m_sampleBufferSize)
|
|
{
|
|
std::vector<SampleVector::const_iterator> vbegin;
|
|
vbegin.push_back(m_sampleBuffer.begin());
|
|
m_scopeSink->feed(vbegin, m_sampleBufferSize);
|
|
m_sampleBufferIndex = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void HeatMapSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
|
|
{
|
|
QMutexLocker mutexLocker(&m_mutex); // Is this too coarse, depending on size of sample vector?
|
|
Complex ci;
|
|
|
|
for (SampleVector::const_iterator it = begin; it != end; ++it)
|
|
{
|
|
Complex c(it->real(), it->imag());
|
|
c *= m_nco.nextIQ();
|
|
|
|
if (m_interpolatorDistance < 1.0f) // interpolate
|
|
{
|
|
while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci))
|
|
{
|
|
processOneSample(ci);
|
|
m_interpolatorDistanceRemain += m_interpolatorDistance;
|
|
}
|
|
}
|
|
else // decimate
|
|
{
|
|
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
|
|
{
|
|
processOneSample(ci);
|
|
m_interpolatorDistanceRemain += m_interpolatorDistance;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void HeatMapSink::processOneSample(Complex &ci)
|
|
{
|
|
Real re = ci.real() / SDR_RX_SCALEF;
|
|
Real im = ci.imag() / SDR_RX_SCALEF;
|
|
Real magsq = re*re + im*im;
|
|
m_movingAverage(magsq);
|
|
m_magsq = m_movingAverage.asDouble();
|
|
m_magsqSum += magsq;
|
|
if (magsq > m_magsqPeak) {
|
|
m_magsqPeak = magsq;
|
|
}
|
|
m_magsqCount++;
|
|
|
|
// Although computationally more expensive to take the square root here,
|
|
// it possibly reduces problems of accumulating numbers
|
|
// that may differ significantly in magnitude, for long averages
|
|
double mag = sqrt((double)magsq);
|
|
|
|
m_magSum += mag;
|
|
if (mag > m_pulseThresholdLinear)
|
|
{
|
|
m_magPulseSum += mag;
|
|
m_magPulseCount++;
|
|
if (m_magPulseCount >= m_averageCnt)
|
|
{
|
|
m_magPulseAvg = m_magPulseSum / m_magPulseCount;
|
|
m_magPulseSum = 0.0;
|
|
m_magPulseCount = 0;
|
|
}
|
|
}
|
|
|
|
if (mag > m_magMaxPeak) {
|
|
m_magMaxPeak = mag;
|
|
}
|
|
if (mag < m_magMinPeak) {
|
|
m_magMinPeak = mag;
|
|
}
|
|
|
|
m_magCount++;
|
|
if (m_magCount >= m_averageCnt)
|
|
{
|
|
m_magAvg = m_magSum / m_magCount;
|
|
m_magSum = 0.0;
|
|
m_magCount = 0;
|
|
}
|
|
|
|
// Sample to feed to scope (so we can see power at channel sample rate)
|
|
Complex scopeSample;
|
|
scopeSample.real(ci.real() / SDR_RX_SCALEF);
|
|
scopeSample.imag(ci.imag() / SDR_RX_SCALEF);
|
|
sampleToScope(scopeSample);
|
|
}
|
|
|
|
void HeatMapSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
|
|
{
|
|
qDebug() << "HeatMapSink::applyChannelSettings:"
|
|
<< " channelSampleRate: " << channelSampleRate
|
|
<< " channelFrequencyOffset: " << channelFrequencyOffset;
|
|
|
|
if ((m_channelFrequencyOffset != channelFrequencyOffset) ||
|
|
(m_channelSampleRate != channelSampleRate) || force)
|
|
{
|
|
m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
|
|
}
|
|
|
|
if ((m_channelSampleRate != channelSampleRate) || force)
|
|
{
|
|
m_interpolator.create(16, channelSampleRate, m_settings.m_rfBandwidth / 2.2);
|
|
m_interpolatorDistance = (Real) channelSampleRate / (Real) m_settings.m_sampleRate;
|
|
m_interpolatorDistanceRemain = m_interpolatorDistance;
|
|
}
|
|
|
|
m_channelSampleRate = channelSampleRate;
|
|
m_channelFrequencyOffset = channelFrequencyOffset;
|
|
}
|
|
|
|
void HeatMapSink::applySettings(const HeatMapSettings& settings, bool force)
|
|
{
|
|
qDebug() << "HeatMapSink::applySettings:"
|
|
<< " sampleRate: " << settings.m_sampleRate
|
|
<< " averagePeriodUS: " << settings.m_averagePeriodUS
|
|
<< " pulseThreshold: " << settings.m_pulseThreshold
|
|
<< " force: " << force;
|
|
|
|
if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth)
|
|
|| (settings.m_averagePeriodUS != m_settings.m_averagePeriodUS)
|
|
|| (settings.m_sampleRate != m_settings.m_sampleRate)
|
|
|| force)
|
|
{
|
|
m_interpolator.create(16, m_channelSampleRate, settings.m_rfBandwidth / 2.2);
|
|
m_interpolatorDistance = (Real) m_channelSampleRate / (Real) settings.m_sampleRate;
|
|
m_interpolatorDistanceRemain = m_interpolatorDistance;
|
|
}
|
|
|
|
if ((settings.m_averagePeriodUS != m_settings.m_averagePeriodUS)
|
|
|| (settings.m_sampleRate != m_settings.m_sampleRate)
|
|
|| force)
|
|
{
|
|
m_averageCnt = (int)((settings.m_averagePeriodUS * settings.m_sampleRate / 1e6));
|
|
// For low sample rates, we want a small buffer, so scope update isn't too slow
|
|
if (settings.m_sampleRate < 100) {
|
|
m_sampleBufferSize = 1;
|
|
} else if (settings.m_sampleRate <= 100) {
|
|
m_sampleBufferSize = 10;
|
|
} else if (settings.m_sampleRate <= 10000) {
|
|
m_sampleBufferSize = 100;
|
|
} else {
|
|
m_sampleBufferSize = 1000;
|
|
}
|
|
qDebug() << "m_averageCnt" << m_averageCnt;
|
|
qDebug() << "m_sampleBufferSize" << m_sampleBufferSize;
|
|
m_sampleBuffer.resize(m_sampleBufferSize);
|
|
if (m_sampleBufferIndex >= m_sampleBufferSize) {
|
|
m_sampleBufferIndex = 0;
|
|
}
|
|
}
|
|
|
|
if ((settings.m_pulseThreshold != m_settings.m_pulseThreshold) || force)
|
|
{
|
|
m_pulseThresholdLinear = std::pow(10.0, settings.m_pulseThreshold / 20.0);
|
|
qDebug() << "m_pulseThresholdLinear" << m_pulseThresholdLinear;
|
|
}
|
|
|
|
m_settings = settings;
|
|
}
|
|
|