1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-23 16:38:37 -05:00
sdrangel/sdrbase/dsp/agc.h
2017-08-06 00:02:16 +02:00

137 lines
3.9 KiB
C++

/*
* kissagc.h
*
* Created on: May 12, 2015
* Author: f4exb
*/
#ifndef INCLUDE_GPL_DSP_AGC_H_
#define INCLUDE_GPL_DSP_AGC_H_
#include "movingaverage.h"
class AGC
{
public:
AGC(int historySize, double R);
virtual ~AGC();
void resize(int historySize, double R);
void setOrder(double R) { m_R = R; }
Real getValue();
Real getAverage();
virtual void feed(Complex& ci) = 0;
protected:
double m_u0; //!< AGC factor
double m_R; //!< ordered magnitude
MovingAverage<double> m_moving_average; //!< Averaging engine. The stack length conditions the smoothness of AGC.
int m_historySize; //!< Averaging length (attack)
int m_count; //!< Samples counter
};
class MagAGC : public AGC
{
public:
MagAGC(int historySize, double R, double threshold);
virtual ~MagAGC();
void setSquared(bool squared) { m_squared = squared; }
void resize(int historySize, Real R);
void setOrder(double R);
virtual void feed(Complex& ci);
double feedAndGetValue(const Complex& ci);
double getMagSq() const { return m_magsq; }
void setThreshold(double threshold) { m_threshold = threshold; }
void setThresholdEnable(bool enable);
void setGate(int gate) { m_gate = gate; }
void setStepDownDelay(int stepDownDelay) { m_stepDownDelay = stepDownDelay; }
void setClamping(bool clamping) { m_clamping = clamping; }
void setClampMax(double clampMax) { m_clampMax = clampMax; }
private:
bool m_squared; //!< use squared magnitude (power) to compute AGC value
double m_magsq; //!< current squared magnitude (power)
double m_threshold; //!< squelch on magsq average
bool m_thresholdEnable; //!< enable squelch on power threshold
int m_gate; //!< power threshold gate in number of samples
int m_stepLength; //!< transition step length in number of samples
double m_stepDelta; //!< transition step unit by sample
int m_stepUpCounter; //!< step up transition samples counter
int m_stepDownCounter; //!< step down transition samples counter
int m_gateCounter; //!< threshold gate samples counter
int m_stepDownDelay; //!< delay in samples before cutoff (release)
bool m_clamping; //!< clamping active
double m_R2; //!< square of ordered magnitude
double m_clampMax; //!< maximum to clamp to as power value
};
class AlphaAGC : public AGC
{
public:
AlphaAGC(int historySize, Real R);
AlphaAGC(int historySize, Real R, Real alpha);
virtual ~AlphaAGC();
void resize(int historySize, Real R, Real alpha);
virtual void feed(Complex& ci);
Real getMagSq() const { return m_magsq; }
private:
Real m_alpha;
Real m_magsq;
bool m_squelchOpen;
};
class SimpleAGC
{
public:
SimpleAGC(int historySize, Real initial, Real cutoff=0, Real clip=0) :
m_squelchOpen(false),
m_fill(initial),
m_cutoff(cutoff),
m_clip(clip),
m_moving_average(historySize, initial)
{}
void resize(int historySize, Real initial, Real cutoff=0, Real clip=0)
{
m_fill = initial;
m_cutoff = cutoff;
m_clip = clip;
m_moving_average.resize(historySize, initial);
}
void fill(double value)
{
m_moving_average.fill(value);
}
Real getValue()
{
if (m_moving_average.average() > m_clip)
{
return m_moving_average.average();
} else
{
return m_clip;
}
}
void feed(Real value)
{
if (value > m_cutoff)
{
m_moving_average.feed(value);
}
}
private:
bool m_squelchOpen; // open for processing
Real m_fill; // refill average at this level
Real m_cutoff; // consider samples only above this level
Real m_clip; // never go below this level
MovingAverage<double> m_moving_average; // Averaging engine. The stack length conditions the smoothness of AGC.
};
#endif /* INCLUDE_GPL_DSP_AGC_H_ */