1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-10-31 15:07:12 -04:00
sdrangel/devices/bladerf2/devicebladerf2.cpp

567 lines
15 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016-2017 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <QtGlobal>
#include "devicebladerf2.h"
DeviceBladeRF2::DeviceBladeRF2() :
m_dev(0),
m_nbRxChannels(0),
m_nbTxChannels(0),
m_rxOpen(0),
m_txOpen(0)
{}
DeviceBladeRF2::~DeviceBladeRF2()
{
if (m_dev)
{
bladerf_close(m_dev);
m_dev = 0;
}
if (m_rxOpen) {
delete[] m_rxOpen;
}
if (m_txOpen) {
delete[] m_txOpen;
}
}
void DeviceBladeRF2::enumOriginDevices(const QString& hardwareId, PluginInterface::OriginDevices& originDevices)
{
struct bladerf_devinfo *devinfo = 0;
int count = bladerf_get_device_list(&devinfo);
if (devinfo)
{
for(int i = 0; i < count; i++)
{
struct bladerf *dev;
int status = bladerf_open_with_devinfo(&dev, &devinfo[i]);
if (status == BLADERF_ERR_NODEV)
{
qCritical("DeviceBladeRF2::enumOriginDevices: No device at index %d", i);
continue;
}
else if (status != 0)
{
qCritical("DeviceBladeRF2::enumOriginDevices: Failed to open device at index %d", i);
continue;
}
const char *boardName = bladerf_get_board_name(dev);
if (strcmp(boardName, "bladerf2") == 0)
{
unsigned int nbRxChannels = bladerf_get_channel_count(dev, BLADERF_RX);
unsigned int nbTxChannels = bladerf_get_channel_count(dev, BLADERF_TX);
// make the stream index a placeholder for future arg() hence the arg("%1")
QString displayableName(QString("BladeRF2[%1:$1] %2").arg(devinfo[i].instance).arg(devinfo[i].serial));
originDevices.append(PluginInterface::OriginDevice(
displayableName,
hardwareId,
QString(devinfo[i].serial),
i, // Sequence
nbRxChannels,
nbTxChannels
));
}
bladerf_close(dev);
}
bladerf_free_device_list(devinfo); // Valgrind memcheck
}
}
bool DeviceBladeRF2::open(const char *serial)
{
int fpga_loaded;
if ((m_dev = open_bladerf_from_serial(serial)) == 0)
{
qCritical("DeviceBladeRF2::open: could not open BladeRF");
return false;
}
fpga_loaded = bladerf_is_fpga_configured(m_dev);
if (fpga_loaded < 0)
{
qCritical("DeviceBladeRF2::open: failed to check FPGA state: %s",
bladerf_strerror(fpga_loaded));
return false;
}
else if (fpga_loaded == 0)
{
qCritical("DeviceBladeRF2::open: the device's FPGA is not loaded.");
return false;
}
m_nbRxChannels = bladerf_get_channel_count(m_dev, BLADERF_RX);
m_nbTxChannels = bladerf_get_channel_count(m_dev, BLADERF_TX);
m_rxOpen = new bool[m_nbRxChannels];
m_txOpen = new bool[m_nbTxChannels];
std::fill(m_rxOpen, m_rxOpen + m_nbRxChannels, false);
std::fill(m_txOpen, m_txOpen + m_nbTxChannels, false);
return true;
}
void DeviceBladeRF2::close()
{
if (m_dev)
{
bladerf_close(m_dev);
m_dev = 0;
}
}
struct bladerf *DeviceBladeRF2::open_bladerf_from_serial(const char *serial)
{
int status;
struct bladerf *dev;
struct bladerf_devinfo info;
/* Initialize all fields to "don't care" wildcard values.
*
* Immediately passing this to bladerf_open_with_devinfo() would cause
* libbladeRF to open any device on any available backend. */
bladerf_init_devinfo(&info);
/* Specify the desired device's serial number, while leaving all other
* fields in the info structure wildcard values */
if (serial != 0)
{
strncpy(info.serial, serial, BLADERF_SERIAL_LENGTH - 1);
info.serial[BLADERF_SERIAL_LENGTH - 1] = '\0';
}
status = bladerf_open_with_devinfo(&dev, &info);
if (status == BLADERF_ERR_NODEV)
{
qCritical("DeviceBladeRF2::open_bladerf_from_serial: No devices available with serial %s", serial);
return 0;
}
else if (status != 0)
{
qCritical("DeviceBladeRF2::open_bladerf_from_serial: Failed to open device with serial %s (%s)",
serial, bladerf_strerror(status));
return 0;
}
else
{
return dev;
}
}
bool DeviceBladeRF2::openRx(int channel)
{
if (!m_dev) {
return false;
}
if ((channel < 0) || (channel >= m_nbRxChannels))
{
qCritical("DeviceBladeRF2::openRx: invalid Rx channel index %d", channel);
return false;
}
int status;
if (!m_rxOpen[channel])
{
status = bladerf_enable_module(m_dev, BLADERF_CHANNEL_RX(channel), true);
if (status < 0)
{
qCritical("DeviceBladeRF2::openRx: failed to enable Rx channel %d: %s",
channel, bladerf_strerror(status));
return false;
}
else
{
qDebug("DeviceBladeRF2::openRx: Rx channel %d enabled", channel);
m_rxOpen[channel] = true;
return true;
}
}
else
{
qDebug("DeviceBladeRF2::openRx: Rx channel %d already opened", channel);
return true;
}
}
bool DeviceBladeRF2::openTx(int channel)
{
if (!m_dev) {
return false;
}
if ((channel < 0) || (channel >= m_nbTxChannels))
{
qCritical("DeviceBladeRF2::openTx: invalid Tx channel index %d", channel);
return false;
}
int status;
if (!m_txOpen[channel])
{
status = bladerf_enable_module(m_dev, BLADERF_CHANNEL_TX(channel), true);
if (status < 0)
{
qCritical("DeviceBladeRF2::openTx: Failed to enable Tx channel %d: %s",
channel, bladerf_strerror(status));
return false;
}
else
{
qDebug("DeviceBladeRF2::openTx: Tx channel %d enabled", channel);
m_txOpen[channel] = true;
return true;
}
}
else
{
qDebug("DeviceBladeRF2::openTx: Tx channel %d already opened", channel);
return true;
}
}
void DeviceBladeRF2::closeRx(int channel)
{
if (!m_dev) {
return;
}
if ((channel < 0) || (channel >= m_nbRxChannels))
{
qCritical("DeviceBladeRF2::closeRx: invalid Rx channel index %d", channel);
return;
}
if (m_rxOpen[channel])
{
int status = bladerf_enable_module(m_dev, BLADERF_CHANNEL_RX(channel), false);
m_rxOpen[channel] = false;
if (status < 0) {
qCritical("DeviceBladeRF2::closeRx: failed to disable Rx channel %d: %s", channel, bladerf_strerror(status));
} else {
qDebug("DeviceBladeRF2::closeRx: Rx channel %d disabled", channel);
}
}
else
{
qDebug("DeviceBladeRF2::closeRx: Rx channel %d already closed", channel);
}
}
void DeviceBladeRF2::closeTx(int channel)
{
if (!m_dev) {
return;
}
if ((channel < 0) || (channel >= m_nbTxChannels))
{
qCritical("DeviceBladeRF2::closeTx: invalid Tx channel index %d", channel);
return;
}
if (m_txOpen[channel])
{
int status = bladerf_enable_module(m_dev, BLADERF_CHANNEL_TX(channel), false);
m_txOpen[channel] = false;
if (status < 0) {
qCritical("DeviceBladeRF2::closeTx: failed to disable Tx channel %d: %s", channel, bladerf_strerror(status));
} else {
qDebug("DeviceBladeRF2::closeTx: Tx channel %d disabled", channel);
}
}
else
{
qDebug("DeviceBladeRF2::closeTx: Rx channel %d already closed", channel);
}
}
void DeviceBladeRF2::getFrequencyRangeRx(uint64_t& min, uint64_t& max, int& step, float& scale)
{
if (m_dev)
{
const struct bladerf_range *range;
int status;
status = bladerf_get_frequency_range(m_dev, BLADERF_CHANNEL_RX(0), &range);
if (status < 0)
{
qCritical("DeviceBladeRF2::getFrequencyRangeRx: Failed to get Rx frequency range: %s",
bladerf_strerror(status));
}
else
{
min = range->min;
max = range->max;
step = range->step;
scale = range->scale;
}
}
}
void DeviceBladeRF2::getFrequencyRangeTx(uint64_t& min, uint64_t& max, int& step, float& scale)
{
if (m_dev)
{
const struct bladerf_range *range;
int status;
status = bladerf_get_frequency_range(m_dev, BLADERF_CHANNEL_TX(0), &range);
if (status < 0)
{
qCritical("DeviceBladeRF2::getFrequencyRangeTx: Failed to get Tx frequency range: %s",
bladerf_strerror(status));
}
else
{
min = range->min;
max = range->max;
step = range->step;
scale = range->scale;
}
}
}
void DeviceBladeRF2::getSampleRateRangeRx(int& min, int& max, int& step, float& scale)
{
if (m_dev)
{
const struct bladerf_range *range;
int status;
status = bladerf_get_sample_rate_range(m_dev, BLADERF_CHANNEL_RX(0), &range);
if (status < 0)
{
qCritical("DeviceBladeRF2::getSampleRateRangeRx: Failed to get Rx sample rate range: %s",
bladerf_strerror(status));
}
else
{
min = range->min;
max = range->max;
step = range->step;
scale = range->scale;
}
}
}
void DeviceBladeRF2::getSampleRateRangeTx(int& min, int& max, int& step, float& scale)
{
if (m_dev)
{
const struct bladerf_range *range;
int status;
status = bladerf_get_sample_rate_range(m_dev, BLADERF_CHANNEL_TX(0), &range);
if (status < 0)
{
qCritical("DeviceBladeRF2::getSampleRateRangeTx: Failed to get Tx sample rate range: %s",
bladerf_strerror(status));
}
else
{
min = range->min;
max = range->max;
step = range->step;
scale = range->scale;
}
}
}
void DeviceBladeRF2::getBandwidthRangeRx(int& min, int& max, int& step, float& scale)
{
if (m_dev)
{
const struct bladerf_range *range;
int status;
status = bladerf_get_bandwidth_range(m_dev, BLADERF_CHANNEL_RX(0), &range);
if (status < 0)
{
qCritical("DeviceBladeRF2::getBandwidthRangeRx: Failed to get Rx bandwidth range: %s",
bladerf_strerror(status));
}
else
{
min = range->min;
max = range->max;
step = range->step;
scale = range->scale;
}
}
}
void DeviceBladeRF2::getBandwidthRangeTx(int& min, int& max, int& step, float& scale)
{
if (m_dev)
{
const struct bladerf_range *range;
int status;
status = bladerf_get_bandwidth_range(m_dev, BLADERF_CHANNEL_TX(0), &range);
if (status < 0)
{
qCritical("DeviceBladeRF2::getBandwidthRangeTx: Failed to get Tx bandwidth range: %s",
bladerf_strerror(status));
}
else
{
min = range->min;
max = range->max;
step = range->step;
scale = range->scale;
}
}
}
void DeviceBladeRF2::getGlobalGainRangeRx(int& min, int& max, int& step, float& scale)
{
if (m_dev)
{
const struct bladerf_range *range;
int status;
status = bladerf_get_gain_range(m_dev, BLADERF_CHANNEL_RX(0), &range);
if (status < 0)
{
qCritical("DeviceBladeRF2::getGlobalGainRangeRx: Failed to get Rx global gain range: %s",
bladerf_strerror(status));
}
else
{
min = range->min;
max = range->max;
step = range->step;
scale = range->scale;
}
}
}
void DeviceBladeRF2::getGlobalGainRangeTx(int& min, int& max, int& step, float& scale)
{
if (m_dev)
{
const struct bladerf_range *range;
int status;
status = bladerf_get_gain_range(m_dev, BLADERF_CHANNEL_TX(0), &range);
if (status < 0)
{
qCritical("DeviceBladeRF2::getGlobalGainRangeTx: Failed to get Tx global gain range: %s",
bladerf_strerror(status));
}
else
{
min = range->min;
max = range->max;
step = range->step;
scale = range->scale;
qDebug("DeviceBladeRF2::getGlobalGainRangeTx: min: %d max: %d step: %d scale: %f",
min, max, step, scale);
}
}
}
int DeviceBladeRF2::getGainModesRx(const bladerf_gain_modes **modes)
{
if (m_dev)
{
// int n = bladerf_get_gain_modes(m_dev, BLADERF_CHANNEL_RX(0), 0); // does not work anymore with libbladerf 2.2.1
// if (n < 0)
// {
// qCritical("DeviceBladeRF2::getGainModesRx: Failed to get the number of Rx gain modes: %s", bladerf_strerror(n));
// return 0;
// }
int status = bladerf_get_gain_modes(m_dev, BLADERF_CHANNEL_RX(0), modes);
if (status < 0)
{
qCritical("DeviceBladeRF2::getGainModesRx: Failed to get Rx gain modes: %s", bladerf_strerror(status));
return 0;
}
else
{
return status; // This is the number of gain modes (libbladerf 2.2.1)
}
}
else
{
return 0;
}
}
void DeviceBladeRF2::setBiasTeeRx(bool enable)
{
if (m_dev)
{
int status = bladerf_set_bias_tee(m_dev, BLADERF_CHANNEL_RX(0), enable);
if (status < 0) {
qCritical("DeviceBladeRF2::setBiasTeeRx: Failed to set Rx bias tee: %s", bladerf_strerror(status));
}
}
}
void DeviceBladeRF2::setBiasTeeTx(bool enable)
{
if (m_dev)
{
int status = bladerf_set_bias_tee(m_dev, BLADERF_CHANNEL_TX(0), enable);
if (status < 0) {
qCritical("DeviceBladeRF2::setBiasTeeTx: Failed to set Tx bias tee: %s", bladerf_strerror(status));
}
}
}