mirror of
https://github.com/f4exb/sdrangel.git
synced 2024-11-29 19:28:47 -05:00
2e04d2fe9d
- remove __attribute__((unused)) not supported on MSVC - remove __attribute((unused)) not supported on MSVC - add symbol exports to RemoteDataReadQueue and RemoteDataQueue - add export symbols to sdrsrv
1395 lines
43 KiB
C++
1395 lines
43 KiB
C++
/*---------------------------------------------------------------------------*\
|
|
|
|
FILE........: cohpsk.c
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: March 2015
|
|
|
|
Functions that implement a coherent PSK FDM modem.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
Copyright (C) 2015 David Rowe
|
|
|
|
All rights reserved.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License version 2.1, as
|
|
published by the Free Software Foundation. This program is
|
|
distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
INCLUDES
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include "codec2_cohpsk.h"
|
|
#include "cohpsk_defs.h"
|
|
#include "cohpsk_internal.h"
|
|
#include "fdmdv_internal.h"
|
|
#include "pilots_coh.h"
|
|
#include "comp_prim.h"
|
|
#include "kiss_fft.h"
|
|
#include "linreg.h"
|
|
#include "rn_coh.h"
|
|
#include "test_bits_coh.h"
|
|
|
|
namespace FreeDV
|
|
{
|
|
|
|
static COMP qpsk_mod[] = {
|
|
{ 1.0, 0.0},
|
|
{ 0.0, 1.0},
|
|
{ 0.0,-1.0},
|
|
{-1.0, 0.0}
|
|
};
|
|
|
|
static int sampling_points[] = {0, 1, 6, 7};
|
|
|
|
void corr_with_pilots_comp(float *corr_out, float *mag_out, struct COHPSK *coh, int t, COMP f_fine);
|
|
void update_ct_symb_buf(COMP ct_symb_buf[][COHPSK_NC*ND], COMP ch_symb[][COHPSK_NC*ND]);
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTIONS
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
|
|
/*--------------------------------------------------------------------------* \
|
|
|
|
FUNCTION....: cohpsk_create
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: Marcg 2015
|
|
|
|
Create and initialise an instance of the modem. Returns a pointer
|
|
to the modem states or NULL on failure. One set of states is
|
|
sufficient for a full duplex modem.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
struct COHPSK *cohpsk_create(void)
|
|
{
|
|
struct COHPSK *coh;
|
|
struct FDMDV *fdmdv;
|
|
int r,c,p,i;
|
|
float freq_hz;
|
|
|
|
assert(COHPSK_NC == PILOTS_NC);
|
|
assert(COHPSK_NOM_SAMPLES_PER_FRAME == (COHPSK_M*NSYMROWPILOT));
|
|
assert(COHPSK_MAX_SAMPLES_PER_FRAME == (COHPSK_M*NSYMROWPILOT+COHPSK_M/P));
|
|
assert(COHPSK_ND == ND);
|
|
assert(COHPSK_NSYM == NSYM); /* as we want to use the tx sym mem on fdmdv */
|
|
assert(COHPSK_NT == NT);
|
|
|
|
coh = (struct COHPSK*) malloc(sizeof(struct COHPSK));
|
|
if (coh == NULL)
|
|
return NULL;
|
|
|
|
/* set up buffer of tx pilot symbols for coh demod on rx */
|
|
|
|
for(r=0; r<2*NPILOTSFRAME; ) {
|
|
for(p=0; p<NPILOTSFRAME; r++, p++) {
|
|
for(c=0; c<COHPSK_NC; c++) {
|
|
coh->pilot2[r][c] = pilots_coh[p][c];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Clear symbol buffer memory */
|
|
|
|
for (r=0; r<NCT_SYMB_BUF; r++) {
|
|
for(c=0; c<COHPSK_NC*ND; c++) {
|
|
coh->ct_symb_buf[r][c].real = 0.0;
|
|
coh->ct_symb_buf[r][c].imag = 0.0;
|
|
}
|
|
}
|
|
|
|
coh->ff_phase.real = 1.0; coh->ff_phase.imag = 0.0;
|
|
coh->sync = 0;
|
|
coh->frame = 0;
|
|
coh->ratio = 0.0;
|
|
coh->nin = COHPSK_M;
|
|
|
|
/* clear sync window buffer */
|
|
|
|
for (i=0; i<NSW*NSYMROWPILOT*COHPSK_M; i++) {
|
|
coh->ch_fdm_frame_buf[i].real = 0.0;
|
|
coh->ch_fdm_frame_buf[i].imag = 0.0;
|
|
}
|
|
|
|
/* set up fdmdv states so we can use those modem functions */
|
|
|
|
fdmdv = fdmdv_create(COHPSK_NC*ND - 1);
|
|
fdmdv->fsep = COHPSK_RS*(1.0 + COHPSK_EXCESS_BW);
|
|
for(c=0; c<COHPSK_NC*ND; c++) {
|
|
fdmdv->phase_tx[c].real = 1.0;
|
|
fdmdv->phase_tx[c].imag = 0.0;
|
|
|
|
/* note non-linear carrier spacing to help PAPR, works v well in conjunction with CLIP */
|
|
|
|
freq_hz = fdmdv->fsep*( -(COHPSK_NC*ND)/2 - 0.5 + pow(c + 1.0, 0.98) );
|
|
|
|
fdmdv->freq[c].real = cosf(2.0*M_PI*freq_hz/COHPSK_FS);
|
|
fdmdv->freq[c].imag = sinf(2.0*M_PI*freq_hz/COHPSK_FS);
|
|
fdmdv->freq_pol[c] = 2.0*M_PI*freq_hz/COHPSK_FS;
|
|
|
|
//printf("c: %d %f %f\n",c,freq_hz,fdmdv->freq_pol[c]);
|
|
for(i=0; i<COHPSK_NFILTER; i++) {
|
|
coh->rx_filter_memory[c][i].real = 0.0;
|
|
coh->rx_filter_memory[c][i].imag = 0.0;
|
|
}
|
|
|
|
/* optional per-carrier amplitude weighting for testing */
|
|
|
|
coh->carrier_ampl[c] = 1.0;
|
|
}
|
|
fdmdv->fbb_rect.real = cosf(2.0*PI*FDMDV_FCENTRE/COHPSK_FS);
|
|
fdmdv->fbb_rect.imag = sinf(2.0*PI*FDMDV_FCENTRE/COHPSK_FS);
|
|
fdmdv->fbb_pol = 2.0*PI*FDMDV_FCENTRE/COHPSK_FS;
|
|
|
|
coh->fdmdv = fdmdv;
|
|
|
|
coh->sig_rms = coh->noise_rms = 0.0;
|
|
|
|
for(c=0; c<COHPSK_NC*ND; c++) {
|
|
for (r=0; r<NSYMROW; r++) {
|
|
coh->rx_symb[r][c].real = 0.0;
|
|
coh->rx_symb[r][c].imag = 0.0;
|
|
}
|
|
}
|
|
|
|
coh->verbose = 0;
|
|
|
|
/* disable optional logging by default */
|
|
|
|
coh->rx_baseband_log = NULL;
|
|
coh->rx_baseband_log_col_index = 0;
|
|
coh->rx_filt_log = NULL;
|
|
coh->rx_filt_log_col_index = 0;
|
|
coh->ch_symb_log = NULL;
|
|
coh->ch_symb_log_r = 0;
|
|
coh->rx_timing_log = NULL;
|
|
coh->rx_timing_log_index = 0;
|
|
|
|
/* test frames */
|
|
|
|
coh->ptest_bits_coh_tx = coh->ptest_bits_coh_rx[0] = coh->ptest_bits_coh_rx[1] = (int*)test_bits_coh;
|
|
coh->ptest_bits_coh_end = (int*)test_bits_coh + sizeof(test_bits_coh)/sizeof(int);
|
|
|
|
/* Disable 'reduce' frequency estimation mode */
|
|
coh->freq_est_mode_reduced = 0;
|
|
|
|
return coh;
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: cohpsk_destroy
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: March 2015
|
|
|
|
Destroy an instance of the modem.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
void cohpsk_destroy(struct COHPSK *coh)
|
|
{
|
|
assert(coh != NULL);
|
|
fdmdv_destroy(coh->fdmdv);
|
|
free(coh);
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: bits_to_qpsk_symbols()
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: March 2015
|
|
|
|
Rate Rs modulator. Maps bits to parallel DQPSK symbols and inserts pilot symbols.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
void bits_to_qpsk_symbols(COMP tx_symb[][COHPSK_NC*ND], int tx_bits[], int nbits)
|
|
{
|
|
int i, r, c, p_r, data_r, d, diversity;
|
|
short bits;
|
|
|
|
/* check allowed number of bits supplied matches number of QPSK
|
|
symbols in the frame */
|
|
|
|
assert( (NSYMROW*COHPSK_NC*2 == nbits) || (NSYMROW*COHPSK_NC*2*ND == nbits));
|
|
|
|
/* if we input twice as many bits we don't do diversity */
|
|
|
|
if (NSYMROW*COHPSK_NC*2 == nbits) {
|
|
diversity = 1; /* diversity mode */
|
|
}
|
|
else {
|
|
diversity = 2; /* twice as many bits, non diversity mode */
|
|
}
|
|
|
|
/*
|
|
Insert two rows of Nc pilots at beginning of data frame.
|
|
|
|
Organise QPSK symbols into a NSYMBROWS rows by PILOTS_NC*ND cols matrix,
|
|
each column is a carrier, time flows down the cols......
|
|
|
|
Note: the "& 0x1" prevents and non binary tx_bits[] screwing up
|
|
our lives. Call me defensive.
|
|
|
|
sqrtf(ND) term ensures the same energy/symbol for different
|
|
diversity factors.
|
|
*/
|
|
|
|
r = 0;
|
|
for(p_r=0; p_r<2; p_r++) {
|
|
for(c=0; c<COHPSK_NC*ND; c++) {
|
|
tx_symb[r][c].real = pilots_coh[p_r][c % COHPSK_NC]/sqrtf(ND);
|
|
tx_symb[r][c].imag = 0.0;
|
|
}
|
|
r++;
|
|
}
|
|
for(data_r=0; data_r<NSYMROW; data_r++, r++) {
|
|
for(c=0; c<COHPSK_NC*diversity; c++) {
|
|
i = c*NSYMROW + data_r;
|
|
bits = (tx_bits[2*i]&0x1)<<1 | (tx_bits[2*i+1]&0x1);
|
|
tx_symb[r][c] = fcmult(1.0/sqrtf(ND),qpsk_mod[bits]);
|
|
}
|
|
}
|
|
|
|
assert(p_r == NPILOTSFRAME);
|
|
assert(r == NSYMROWPILOT);
|
|
|
|
/* if in diversity mode, copy symbols to upper carriers */
|
|
|
|
for(d=1; d<1+ND-diversity; d++) {
|
|
for(r=0; r<NSYMROWPILOT; r++) {
|
|
for(c=0; c<COHPSK_NC; c++) {
|
|
tx_symb[r][c+COHPSK_NC*d] = tx_symb[r][c];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: qpsk_symbols_to_bits()
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: March 2015
|
|
|
|
Rate Rs demodulator. Extract pilot symbols and estimate amplitude and phase
|
|
of each carrier. Correct phase of data symbols and convert to bits.
|
|
|
|
Further improvement. In channels with slowly changing phase we
|
|
could optionally use pilots from several past and future symbols.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
void qpsk_symbols_to_bits(struct COHPSK *coh, float rx_bits[], COMP ct_symb_buf[][COHPSK_NC*ND])
|
|
{
|
|
int p, r, c, i, pc, d, n;
|
|
float x[NPILOTSFRAME+2], x1;
|
|
COMP y[NPILOTSFRAME+2], yfit;
|
|
COMP rx_symb_linear[NSYMROW*COHPSK_NC*ND];
|
|
COMP m, b;
|
|
COMP corr, rot, pi_on_4, phi_rect, div_symb;
|
|
float mag, phi_, amp_;
|
|
float sum_x, sum_xx, noise_var;
|
|
COMP s;
|
|
|
|
pi_on_4.real = cosf(M_PI/4); pi_on_4.imag = sinf(M_PI/4);
|
|
|
|
for(c=0; c<COHPSK_NC*ND; c++) {
|
|
|
|
/* Set up lin reg model and interpolate phase. Works better than average for channels with
|
|
quickly changing phase, like HF. */
|
|
|
|
for(p=0; p<NPILOTSFRAME+2; p++) {
|
|
x[p] = sampling_points[p];
|
|
pc = c % COHPSK_NC;
|
|
y[p] = fcmult(coh->pilot2[p][pc], ct_symb_buf[sampling_points[p]][c]);
|
|
}
|
|
|
|
linreg(&m, &b, x, y, NPILOTSFRAME+2);
|
|
for(r=0; r<NSYMROW; r++) {
|
|
x1 = (float)(r+NPILOTSFRAME);
|
|
yfit = cadd(fcmult(x1,m),b);
|
|
coh->phi_[r][c] = atan2(yfit.imag, yfit.real);
|
|
}
|
|
|
|
/* amplitude estimation */
|
|
|
|
mag = 0.0;
|
|
for(p=0; p<NPILOTSFRAME+2; p++) {
|
|
mag += cabsolute(ct_symb_buf[sampling_points[p]][c]);
|
|
}
|
|
amp_ = mag/(NPILOTSFRAME+2);
|
|
for(r=0; r<NSYMROW; r++) {
|
|
coh->amp_[r][c] = amp_;
|
|
}
|
|
}
|
|
|
|
/* now correct phase of data symbols */
|
|
|
|
for(c=0; c<COHPSK_NC*ND; c++) {
|
|
for (r=0; r<NSYMROW; r++) {
|
|
phi_rect.real = cosf(coh->phi_[r][c]); phi_rect.imag = -sinf(coh->phi_[r][c]);
|
|
coh->rx_symb[r][c] = cmult(ct_symb_buf[NPILOTSFRAME + r][c], phi_rect);
|
|
i = c*NSYMROW + r;
|
|
rx_symb_linear[i] = coh->rx_symb[r][c];
|
|
}
|
|
}
|
|
|
|
/* and finally optional diversity combination, note output is soft decn a "1" is < 0 */
|
|
|
|
for(c=0; c<COHPSK_NC; c++) {
|
|
for(r=0; r<NSYMROW; r++) {
|
|
div_symb = coh->rx_symb[r][c];
|
|
for (d=1; d<ND; d++) {
|
|
div_symb = cadd(div_symb, coh->rx_symb[r][c + COHPSK_NC*d]);
|
|
}
|
|
rot = cmult(div_symb, pi_on_4);
|
|
i = c*NSYMROW + r;
|
|
rx_bits[2*i+1] = rot.real;
|
|
rx_bits[2*i] = rot.imag;
|
|
|
|
/* demodulate bits from upper and lower carriers separately for test purposes */
|
|
|
|
assert(ND == 2);
|
|
|
|
i = c*NSYMROW + r;
|
|
rot = cmult(coh->rx_symb[r][c], pi_on_4);
|
|
coh->rx_bits_lower[2*i+1] = rot.real;
|
|
coh->rx_bits_lower[2*i] = rot.imag;
|
|
rot = cmult(coh->rx_symb[r][c + COHPSK_NC], pi_on_4);
|
|
coh->rx_bits_upper[2*i+1] = rot.real;
|
|
coh->rx_bits_upper[2*i] = rot.imag;
|
|
}
|
|
}
|
|
|
|
|
|
/* estimate RMS signal and noise */
|
|
|
|
mag = 0.0;
|
|
for(i=0; i<NSYMROW*COHPSK_NC*ND; i++)
|
|
mag += cabsolute(rx_symb_linear[i]);
|
|
coh->sig_rms = mag/(NSYMROW*COHPSK_NC*ND);
|
|
|
|
sum_x = 0;
|
|
sum_xx = 0;
|
|
n = 0;
|
|
for (i=0; i<NSYMROW*COHPSK_NC*ND; i++) {
|
|
s = rx_symb_linear[i];
|
|
if (fabsf(s.real) > coh->sig_rms) {
|
|
sum_x += s.imag;
|
|
sum_xx += s.imag*s.imag;
|
|
n++;
|
|
}
|
|
}
|
|
|
|
noise_var = 0;
|
|
if (n > 1) {
|
|
noise_var = (n*sum_xx - sum_x*sum_x)/(n*(n-1));
|
|
}
|
|
coh->noise_rms = sqrtf(noise_var);
|
|
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: tx_filter_and_upconvert_coh()
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: May 2015
|
|
|
|
Given NC symbols construct M samples (1 symbol) of NC filtered
|
|
and upconverted symbols.
|
|
|
|
TODO: work out a way to merge with fdmdv version, e.g. run time define M/NSYM,
|
|
and run unittests on fdmdv and cohpsk modem afterwards.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
void tx_filter_and_upconvert_coh(COMP tx_fdm[], int Nc,const COMP tx_symbols[],
|
|
COMP tx_filter_memory[COHPSK_NC*ND][COHPSK_NSYM],
|
|
COMP phase_tx[], COMP freq[],
|
|
COMP *fbb_phase, COMP fbb_rect)
|
|
{
|
|
int c;
|
|
int i,j,k;
|
|
COMP gain;
|
|
COMP tx_baseband;
|
|
COMP two = {2.0, 0.0};
|
|
float mag;
|
|
|
|
gain.real = sqrtf(2.0)/2.0;
|
|
gain.imag = 0.0;
|
|
|
|
for(i=0; i<COHPSK_M; i++) {
|
|
tx_fdm[i].real = 0.0;
|
|
tx_fdm[i].imag = 0.0;
|
|
}
|
|
|
|
for(c=0; c<Nc; c++)
|
|
tx_filter_memory[c][COHPSK_NSYM-1] = cmult(tx_symbols[c], gain);
|
|
|
|
/*
|
|
tx filter each symbol, generate M filtered output samples for
|
|
each symbol, which we then freq shift and sum with other
|
|
carriers. Efficient polyphase filter techniques used as
|
|
tx_filter_memory is sparse
|
|
*/
|
|
|
|
for(c=0; c<Nc; c++) {
|
|
|
|
for(i=0; i<COHPSK_M; i++) {
|
|
|
|
const COMP * tx_filter_memory_cn = (COMP*) &tx_filter_memory[c];
|
|
/* filter sample of symbol for carrier c */
|
|
tx_baseband.real = 0;
|
|
tx_baseband.imag = 0;
|
|
for(j=0,k=COHPSK_M-i-1; j<COHPSK_NSYM; j++,k+=COHPSK_M){
|
|
tx_baseband = cadd(tx_baseband,fcmult(COHPSK_M,fcmult(gt_alpha5_root_coh[k],tx_filter_memory_cn[j])));
|
|
}
|
|
|
|
/* freq shift and sum */
|
|
|
|
phase_tx[c] = cmult(phase_tx[c], freq[c]);
|
|
tx_fdm[i] = cadd(tx_fdm[i], cmult(tx_baseband, phase_tx[c]));
|
|
}
|
|
//exit(0);
|
|
}
|
|
|
|
/* shift whole thing up to carrier freq */
|
|
|
|
for (i=0; i<COHPSK_M; i++) {
|
|
*fbb_phase = cmult(*fbb_phase, fbb_rect);
|
|
tx_fdm[i] = cmult(tx_fdm[i], *fbb_phase);
|
|
}
|
|
|
|
/*
|
|
Scale such that total Carrier power C of real(tx_fdm) = Nc. This
|
|
excludes the power of the pilot tone.
|
|
We return the complex (single sided) signal to make frequency
|
|
shifting for the purpose of testing easier
|
|
*/
|
|
|
|
for (i=0; i<COHPSK_M; i++)
|
|
tx_fdm[i] = cmult(two, tx_fdm[i]);
|
|
|
|
/* normalise digital oscillators as the magnitude can drift over time */
|
|
|
|
for (c=0; c<Nc; c++) {
|
|
mag = cabsolute(phase_tx[c]);
|
|
phase_tx[c].real /= mag;
|
|
phase_tx[c].imag /= mag;
|
|
}
|
|
|
|
mag = cabsolute(*fbb_phase);
|
|
fbb_phase->real /= mag;
|
|
fbb_phase->imag /= mag;
|
|
|
|
/* shift memory, inserting zeros at end */
|
|
|
|
for(i=0; i<COHPSK_NSYM-1; i++) {
|
|
for(c=0; c<Nc; c++) {
|
|
tx_filter_memory[c][i] = tx_filter_memory[c][i+1];
|
|
}
|
|
}
|
|
|
|
for(c=0; c<Nc; c++) {
|
|
tx_filter_memory[c][COHPSK_NSYM-1].real = 0.0;
|
|
tx_filter_memory[c][COHPSK_NSYM-1].imag = 0.0;
|
|
}
|
|
|
|
}
|
|
|
|
void corr_with_pilots_comp(float *corr_out, float *mag_out, struct COHPSK *coh, int t, COMP dp_f_fine)
|
|
{
|
|
COMP acorr, f_fine_rect, f_corr;
|
|
float mag, corr;
|
|
int c, p, pc;
|
|
|
|
//1,2,7,8
|
|
f_fine_rect.real = 1;
|
|
f_fine_rect.imag = 0;
|
|
|
|
COMP f_fine_rects[4];
|
|
//dp_f_fine = comp_exp_j(2*m_pi*f_fine/cohpsk_rs);
|
|
|
|
f_fine_rect = cmult(f_fine_rect,dp_f_fine); //sampling_points[0]+1 = 1
|
|
f_fine_rects[0] = dp_f_fine;
|
|
f_fine_rect = cmult(dp_f_fine,dp_f_fine); //sampling_points[1]+1 = 2
|
|
f_fine_rects[1] = f_fine_rect;
|
|
f_fine_rect = cmult(f_fine_rect,dp_f_fine); // = 2
|
|
f_fine_rect = cmult(f_fine_rect,dp_f_fine); // = 3
|
|
f_fine_rect = cmult(f_fine_rect,dp_f_fine); // = 4
|
|
f_fine_rect = cmult(f_fine_rect,dp_f_fine); // = 5
|
|
f_fine_rect = cmult(f_fine_rect,dp_f_fine); // = 6
|
|
f_fine_rect = cmult(f_fine_rect,dp_f_fine); //sampling_points[2]+1 = 7
|
|
f_fine_rects[2] = f_fine_rect;
|
|
f_fine_rect = cmult(f_fine_rect,dp_f_fine); //sampling_points[2]+1 = 8
|
|
f_fine_rects[3] = f_fine_rect;
|
|
|
|
corr = 0.0; mag = 0.0;
|
|
for (c=0; c<COHPSK_NC*ND; c++) {
|
|
acorr.real = 0.0; acorr.imag = 0.0;
|
|
for (p=0; p<NPILOTSFRAME+2; p++) {
|
|
//f_fine_rect.real = cosf(f_fine*2.0*M_PI*(sampling_points[p]+1.0)/COHPSK_RS);
|
|
//f_fine_rect.imag = sinf(f_fine*2.0*M_PI*(sampling_points[p]+1.0)/COHPSK_RS);
|
|
f_fine_rect = f_fine_rects[p];
|
|
f_corr = cmult(f_fine_rect, coh->ct_symb_buf[t+sampling_points[p]][c]);
|
|
pc = c % COHPSK_NC;
|
|
acorr = cadd(acorr, fcmult(coh->pilot2[p][pc], f_corr));
|
|
mag += cabsolute(f_corr);
|
|
}
|
|
corr += cabsolute(acorr);
|
|
}
|
|
|
|
*corr_out = corr;
|
|
*mag_out = mag;
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: frame_sync_fine_freq_est()
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: April 2015
|
|
|
|
Returns an estimate of frame sync (coarse timing) offset and fine
|
|
frequency offset, advances to next sync state if we have a reliable
|
|
match for frame sync.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
void frame_sync_fine_freq_est(struct COHPSK *coh, COMP ch_symb[][COHPSK_NC*ND], int sync, int *next_sync)
|
|
{
|
|
int t;
|
|
float f_fine, mag, max_corr, max_mag, corr, delta_f_fine, f_fine_range ;
|
|
COMP f_fine_d_ph;
|
|
|
|
if(coh->freq_est_mode_reduced){
|
|
delta_f_fine = 1.3;
|
|
f_fine_range = 10;
|
|
}else{
|
|
delta_f_fine = .25;
|
|
f_fine_range = 20;
|
|
}
|
|
|
|
/* Represent f_fine scan as delta2-phase */
|
|
const COMP f_fine_d2_ph = comp_exp_j(2*M_PI*delta_f_fine/COHPSK_RS);
|
|
|
|
f_fine = -f_fine_range;
|
|
|
|
update_ct_symb_buf(coh->ct_symb_buf, ch_symb);
|
|
/* sample pilots at start of this frame and start of next frame */
|
|
|
|
if (sync == 0) {
|
|
|
|
/* Represent f_fine as complex delta-phase instead of frequency */
|
|
f_fine_d_ph = comp_exp_j(2*M_PI*f_fine/COHPSK_RS);
|
|
|
|
|
|
/* sample correlation over 2D grid of time and fine freq points */
|
|
max_corr = max_mag = 0;
|
|
for (f_fine=-f_fine_range; f_fine<=f_fine_range; f_fine+=delta_f_fine) {
|
|
for (t=0; t<NSYMROWPILOT; t++) {
|
|
corr_with_pilots_comp(&corr,&mag,coh,t,f_fine_d_ph);
|
|
|
|
if (corr >= max_corr) {
|
|
max_corr = corr;
|
|
max_mag = mag;
|
|
coh->ct = t;
|
|
coh->f_fine_est = f_fine;
|
|
}
|
|
}
|
|
/* Advance f_fine */
|
|
f_fine_d_ph = cmult(f_fine_d_ph,f_fine_d2_ph);
|
|
}
|
|
|
|
|
|
coh->ff_rect.real = cosf(coh->f_fine_est*2.0*M_PI/COHPSK_RS);
|
|
coh->ff_rect.imag = -sinf(coh->f_fine_est*2.0*M_PI/COHPSK_RS);
|
|
if (coh->verbose)
|
|
fprintf(stderr, " [%d] fine freq f: %6.2f max_ratio: %f ct: %d\n", coh->frame, (double)coh->f_fine_est, (double)(max_corr/max_mag), coh->ct);
|
|
|
|
if (max_corr/max_mag > 0.9) {
|
|
if (coh->verbose)
|
|
fprintf(stderr, " [%d] encouraging sync word!\n", coh->frame);
|
|
coh->sync_timer = 0;
|
|
*next_sync = 1;
|
|
}
|
|
else {
|
|
*next_sync = 0;
|
|
}
|
|
coh->ratio = max_corr/max_mag;
|
|
}
|
|
}
|
|
|
|
|
|
void update_ct_symb_buf(COMP ct_symb_buf[][COHPSK_NC*ND], COMP ch_symb[][COHPSK_NC*ND])
|
|
{
|
|
int r, c, i;
|
|
|
|
/* update memory in symbol buffer */
|
|
|
|
for(r=0; r<NCT_SYMB_BUF-NSYMROWPILOT; r++) {
|
|
for(c=0; c<COHPSK_NC*ND; c++)
|
|
ct_symb_buf[r][c] = ct_symb_buf[r+NSYMROWPILOT][c];
|
|
}
|
|
|
|
for(r=NCT_SYMB_BUF-NSYMROWPILOT, i=0; r<NCT_SYMB_BUF; r++, i++) {
|
|
for(c=0; c<COHPSK_NC*ND; c++)
|
|
ct_symb_buf[r][c] = ch_symb[i][c];
|
|
}
|
|
}
|
|
|
|
|
|
int sync_state_machine(struct COHPSK *coh, int sync, int next_sync)
|
|
{
|
|
float corr, mag;
|
|
|
|
if (sync == 1) {
|
|
|
|
/* check that sync is still good, fall out of sync on consecutive bad frames */
|
|
|
|
corr_with_pilots_comp(&corr, &mag, coh, coh->ct, comp_exp_j(2*M_PI*coh->f_fine_est/COHPSK_RS));
|
|
coh->ratio = fabsf(corr)/mag;
|
|
|
|
// printf("%f\n", cabsolute(corr)/mag);
|
|
|
|
if (fabsf(corr)/mag < 0.8)
|
|
coh->sync_timer++;
|
|
else
|
|
coh->sync_timer = 0;
|
|
|
|
if (coh->sync_timer == 10) {
|
|
if (coh->verbose)
|
|
fprintf(stderr," [%d] lost sync ....\n", coh->frame);
|
|
next_sync = 0;
|
|
}
|
|
}
|
|
|
|
sync = next_sync;
|
|
|
|
return sync;
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: cohpsk_mod()
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: 5/4/2015
|
|
|
|
COHPSK modulator, take a frame of COHPSK_BITS_PER_FRAME or
|
|
2*COHPSK_BITS_PER_FRAME bits and generates a frame of
|
|
COHPSK_NOM_SAMPLES_PER_FRAME modulated symbols.
|
|
|
|
if nbits == COHPSK_BITS_PER_FRAME, diveristy mode is used, if nbits
|
|
== 2*COHPSK_BITS_PER_FRAME diversity mode is not used.
|
|
|
|
The output signal is complex to support single sided frequency
|
|
shifting, for example when testing frequency offsets in channel
|
|
simulation.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
void cohpsk_mod(struct COHPSK *coh, COMP tx_fdm[], int tx_bits[], int nbits)
|
|
{
|
|
struct FDMDV *fdmdv = coh->fdmdv;
|
|
COMP tx_symb[NSYMROWPILOT][COHPSK_NC*ND];
|
|
COMP tx_onesym[COHPSK_NC*ND];
|
|
int r,c;
|
|
|
|
bits_to_qpsk_symbols(tx_symb, tx_bits, nbits);
|
|
|
|
for(r=0; r<NSYMROWPILOT; r++) {
|
|
for(c=0; c<COHPSK_NC*ND; c++)
|
|
tx_onesym[c] = fcmult(coh->carrier_ampl[c], tx_symb[r][c]);
|
|
tx_filter_and_upconvert_coh(&tx_fdm[r*COHPSK_M], COHPSK_NC*ND , tx_onesym, fdmdv->tx_filter_memory,
|
|
fdmdv->phase_tx, fdmdv->freq, &fdmdv->fbb_phase_tx, fdmdv->fbb_rect);
|
|
}
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: cohpsk_clip()
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: May 2015
|
|
|
|
Hard clips a cohpsk modulator signal to improve PAPR, CLIP threshold
|
|
hard coded and will need to be changed if NC*ND does.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
void cohpsk_clip(COMP tx_fdm[], float clip_thresh, int n)
|
|
{
|
|
COMP sam;
|
|
float mag;
|
|
int i;
|
|
|
|
for(i=0; i<n; i++) {
|
|
sam = tx_fdm[i];
|
|
mag = cabsolute(sam);
|
|
if (mag > clip_thresh) {
|
|
sam = fcmult(clip_thresh/mag, sam);
|
|
}
|
|
tx_fdm[i] = sam;
|
|
}
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: fdm_downconvert_coh
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: May 2015
|
|
|
|
Frequency shift each modem carrier down to NC baseband signals.
|
|
|
|
TODO: try to combine with fdmdv version, carefully re-test fdmdv modem.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
void fdm_downconvert_coh(COMP rx_baseband[COHPSK_NC][COHPSK_M+COHPSK_M/P], int Nc, COMP rx_fdm[], COMP phase_rx[], COMP freq[], int nin)
|
|
{
|
|
int i,c;
|
|
float mag;
|
|
|
|
/* maximum number of input samples to demod */
|
|
|
|
assert(nin <= (COHPSK_M+COHPSK_M/P));
|
|
|
|
/* downconvert */
|
|
|
|
for (c=0; c<Nc; c++)
|
|
for (i=0; i<nin; i++) {
|
|
phase_rx[c] = cmult(phase_rx[c], freq[c]);
|
|
rx_baseband[c][i] = cmult(rx_fdm[i], cconj(phase_rx[c]));
|
|
}
|
|
|
|
/* normalise digital oscilators as the magnitude can drift over time */
|
|
|
|
for (c=0; c<Nc; c++) {
|
|
mag = cabsolute(phase_rx[c]);
|
|
phase_rx[c].real /= mag;
|
|
phase_rx[c].imag /= mag;
|
|
}
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: rx_filter_coh()
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: May 2015
|
|
|
|
cohpsk version of fdmdv.c rx_filter function.
|
|
|
|
TODO: see if we can merge the two! Will require re-testing of fdmdv modem.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
|
|
void rx_filter_coh(COMP rx_filt[COHPSK_NC+1][P+1], int Nc, COMP rx_baseband[COHPSK_NC+1][COHPSK_M+COHPSK_M/P], COMP rx_filter_memory[COHPSK_NC+1][+COHPSK_NFILTER], int nin)
|
|
{
|
|
int c, i,j,k;
|
|
int n=COHPSK_M/P;
|
|
COMP acc;
|
|
|
|
/* rx filter each symbol, generate P filtered output samples for
|
|
each symbol. Note we keep filter memory at rate M, it's just
|
|
the filter output at rate P */
|
|
|
|
for(i=0, j=0; i<nin; i+=n,j++) {
|
|
|
|
/* latest input sample */
|
|
|
|
for(c=0; c<Nc; c++){
|
|
k=COHPSK_NFILTER-n;
|
|
memcpy(&rx_filter_memory[c][k],&rx_baseband[c][i],n*sizeof(COMP));
|
|
}
|
|
/* convolution (filtering) */
|
|
|
|
for(c=0; c<Nc; c++) {
|
|
/* Cast into const so the compiler doesn't expect aliasing */
|
|
const COMP * rx_filt_lc = &rx_filter_memory[c][0];
|
|
acc.real = 0.0f;
|
|
acc.imag = 0.0f;
|
|
for(k=0; k<COHPSK_NFILTER; k++){
|
|
acc = cadd(acc, fcmult(gt_alpha5_root_coh[k], rx_filt_lc[k]));
|
|
}
|
|
rx_filt[c][j] = acc;
|
|
}
|
|
|
|
/* make room for next input sample */
|
|
for(c=0; c<Nc; c++){
|
|
memcpy(&rx_filter_memory[c][0],&rx_filter_memory[c][n],(COHPSK_NFILTER-n)*sizeof(COMP));
|
|
}
|
|
}
|
|
|
|
assert(j <= (P+1)); /* check for any over runs */
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: fdmdv_freq_shift_coh()
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: May 2015
|
|
|
|
Frequency shift modem signal. The use of complex input and output allows
|
|
single sided frequency shifting (no images).
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
void fdmdv_freq_shift_coh(COMP rx_fdm_fcorr[], COMP rx_fdm[], float foff, float Fs,
|
|
COMP *foff_phase_rect, int nin)
|
|
{
|
|
COMP foff_rect;
|
|
float mag;
|
|
int i;
|
|
|
|
foff_rect.real = cosf(2.0*PI*foff/Fs);
|
|
foff_rect.imag = sinf(2.0*PI*foff/Fs);
|
|
for(i=0; i<nin; i++) {
|
|
*foff_phase_rect = cmult(*foff_phase_rect, foff_rect);
|
|
rx_fdm_fcorr[i] = cmult(rx_fdm[i], *foff_phase_rect);
|
|
}
|
|
|
|
/* normalise digital oscilator as the magnitude can drfift over time */
|
|
|
|
mag = cabsolute(*foff_phase_rect);
|
|
foff_phase_rect->real /= mag;
|
|
foff_phase_rect->imag /= mag;
|
|
}
|
|
|
|
|
|
void rate_Fs_rx_processing(struct COHPSK *coh, COMP ch_symb[][COHPSK_NC*ND], COMP ch_fdm_frame[], float *f_est, int nsymb, int nin, int freq_track)
|
|
{
|
|
struct FDMDV *fdmdv = coh->fdmdv;
|
|
int r, c, i, ch_fdm_frame_index;
|
|
COMP rx_fdm_frame_bb[COHPSK_M+COHPSK_M/P];
|
|
COMP rx_baseband[COHPSK_NC*ND][COHPSK_M+COHPSK_M/P];
|
|
COMP rx_filt[COHPSK_NC*ND][P+1];
|
|
float env[NT*P], rx_timing;
|
|
COMP rx_onesym[COHPSK_NC*ND];
|
|
float beta, g;
|
|
COMP adiff, amod_strip, mod_strip;
|
|
|
|
ch_fdm_frame_index = 0;
|
|
rx_timing = 0;
|
|
|
|
for (r=0; r<nsymb; r++) {
|
|
fdmdv_freq_shift_coh(rx_fdm_frame_bb, &ch_fdm_frame[ch_fdm_frame_index], -(*f_est), COHPSK_FS, &fdmdv->fbb_phase_rx, nin);
|
|
ch_fdm_frame_index += nin;
|
|
fdm_downconvert_coh(rx_baseband, COHPSK_NC*ND, rx_fdm_frame_bb, fdmdv->phase_rx, fdmdv->freq, nin);
|
|
rx_filter_coh(rx_filt, COHPSK_NC*ND, rx_baseband, coh->rx_filter_memory, nin);
|
|
rx_timing = rx_est_timing(rx_onesym, fdmdv->Nc, rx_filt, fdmdv->rx_filter_mem_timing, env, nin, COHPSK_M);
|
|
|
|
for(c=0; c<COHPSK_NC*ND; c++) {
|
|
ch_symb[r][c] = rx_onesym[c];
|
|
}
|
|
|
|
/* freq tracking, see test_ftrack.m for unit test. Placed in
|
|
this function as it needs to work on a symbol by symbol
|
|
abasis rather than frame by frame. This means the control
|
|
loop operates at a sample rate of Rs = 50Hz for say 1 Hz/s
|
|
drift. */
|
|
|
|
if (freq_track) {
|
|
beta = 0.005;
|
|
g = 0.2;
|
|
|
|
/* combine difference on phase from last symbol over Nc carriers */
|
|
|
|
mod_strip.real = 0.0; mod_strip.imag = 0.0;
|
|
for(c=0; c<fdmdv->Nc+1; c++) {
|
|
//printf("rx_onesym[%d] %f %f prev_rx_symbols[%d] %f %f\n", c, rx_onesym[c].real, rx_onesym[c].imag,
|
|
// fdmdv->prev_rx_symbols[c].real, fdmdv->prev_rx_symbols[c].imag);
|
|
adiff = cmult(rx_onesym[c], cconj(fdmdv->prev_rx_symbols[c]));
|
|
fdmdv->prev_rx_symbols[c] = rx_onesym[c];
|
|
|
|
/* 4th power strips QPSK modulation, by multiplying phase by 4
|
|
Using the abs value of the real coord was found to help
|
|
non-linear issues when noise power was large. */
|
|
|
|
amod_strip = cmult(adiff, adiff);
|
|
amod_strip = cmult(amod_strip, amod_strip);
|
|
amod_strip.real = fabsf(amod_strip.real);
|
|
mod_strip = cadd(mod_strip, amod_strip);
|
|
}
|
|
//printf("modstrip: %f %f\n", mod_strip.real, mod_strip.imag);
|
|
|
|
/* loop filter made up of 1st order IIR plus integrator. Integerator
|
|
was found to be reqd */
|
|
|
|
fdmdv->foff_filt = (1.0-beta)*fdmdv->foff_filt + beta*atan2(mod_strip.imag, mod_strip.real);
|
|
//printf("foff_filt: %f angle: %f\n", fdmdv->foff_filt, atan2(mod_strip.imag, mod_strip.real));
|
|
*f_est += g*fdmdv->foff_filt;
|
|
}
|
|
|
|
/* Optional logging used for testing against Octave version */
|
|
|
|
if (coh->rx_baseband_log) {
|
|
assert(nin <= (COHPSK_M+COHPSK_M/P));
|
|
for(c=0; c<COHPSK_NC*ND; c++) {
|
|
for(i=0; i<nin; i++) {
|
|
coh->rx_baseband_log[c*coh->rx_baseband_log_col_sz + coh->rx_baseband_log_col_index + i] = rx_baseband[c][i];
|
|
}
|
|
}
|
|
coh->rx_baseband_log_col_index += nin;
|
|
assert(coh->rx_baseband_log_col_index <= coh->rx_baseband_log_col_sz);
|
|
}
|
|
|
|
if (coh->rx_filt_log) {
|
|
for(c=0; c<COHPSK_NC*ND; c++) {
|
|
for(i=0; i<nin/(COHPSK_M/P); i++) {
|
|
coh->rx_filt_log[c*coh->rx_filt_log_col_sz + coh->rx_filt_log_col_index + i] = rx_filt[c][i];
|
|
}
|
|
}
|
|
coh->rx_filt_log_col_index += nin/(COHPSK_M/P);
|
|
}
|
|
|
|
if (coh->ch_symb_log) {
|
|
for(c=0; c<COHPSK_NC*ND; c++) {
|
|
coh->ch_symb_log[coh->ch_symb_log_r*COHPSK_NC*ND + c] = ch_symb[r][c];
|
|
}
|
|
coh->ch_symb_log_r++;
|
|
}
|
|
|
|
if (coh->rx_timing_log) {
|
|
coh->rx_timing_log[coh->rx_timing_log_index] = rx_timing;
|
|
coh->rx_timing_log_index++;
|
|
//printf("rx_timing_log_index: %d\n", coh->rx_timing_log_index);
|
|
}
|
|
|
|
/* we only allow a timing shift on one symbol per frame */
|
|
|
|
if (nin != COHPSK_M)
|
|
nin = COHPSK_M;
|
|
}
|
|
|
|
coh->rx_timing = rx_timing;
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: cohpsk_set_freq_est_mode()
|
|
AUTHOR......: Brady O'Brien
|
|
DATE CREATED: 12 Dec 2017
|
|
|
|
Enables or disables a 'simple' frequency estimation mode. Simple frequency
|
|
estimation uses substantially less CPU when cohpsk modem is not sunk than
|
|
default mode, but may take many frames to sync.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
void cohpsk_set_freq_est_mode(struct COHPSK *coh, int use_simple_mode){
|
|
if(use_simple_mode){
|
|
coh->freq_est_mode_reduced = 1;
|
|
}else{
|
|
coh->freq_est_mode_reduced = 0;
|
|
}
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: cohpsk_demod()
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: 5/4/2015
|
|
|
|
COHPSK demodulator, takes an array of (nominally) nin_frame =
|
|
COHPSK_NOM_SAMPLES_PER_FRAME modulated samples, returns an array of
|
|
COHPSK_BITS_PER_FRAME bits.
|
|
|
|
The input signal is complex to support single sided frequency shifting
|
|
before the demod input (e.g. click to tune feature).
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
void cohpsk_demod(struct COHPSK *coh, float rx_bits[], int *sync_good, COMP rx_fdm[], int *nin_frame)
|
|
{
|
|
COMP ch_symb[NSW*NSYMROWPILOT][COHPSK_NC*ND];
|
|
int i, j, sync, anext_sync, next_sync, nin, r, c, ns_done;
|
|
float max_ratio, f_est;
|
|
|
|
assert(*nin_frame <= COHPSK_MAX_SAMPLES_PER_FRAME);
|
|
|
|
next_sync = sync = coh->sync;
|
|
|
|
for (i=0; i<NSW*NSYMROWPILOT*COHPSK_M-*nin_frame; i++)
|
|
coh->ch_fdm_frame_buf[i] = coh->ch_fdm_frame_buf[i+*nin_frame];
|
|
//printf("nin_frame: %d i: %d i+nin_frame: %d\n", *nin_frame, i, i+*nin_frame);
|
|
for (j=0; i<NSW*NSYMROWPILOT*COHPSK_M; i++,j++)
|
|
coh->ch_fdm_frame_buf[i] = rx_fdm[j];
|
|
//printf("i: %d j: %d rx_fdm[0]: %f %f\n", i,j, rx_fdm[0].real, rx_fdm[0].imag);
|
|
|
|
/* if out of sync do Initial Freq offset estimation using NSW frames to flush out filter memories */
|
|
|
|
if (sync == 0) {
|
|
|
|
|
|
max_ratio = 0.0;
|
|
f_est = 0.0;
|
|
|
|
coh->f_est -= 20;
|
|
if(coh->f_est < FDMDV_FCENTRE - 60.0){
|
|
coh->f_est = FDMDV_FCENTRE + 60;
|
|
}
|
|
|
|
if(!coh->freq_est_mode_reduced){
|
|
coh->f_est = FDMDV_FCENTRE-40.0;
|
|
}
|
|
|
|
ns_done = 0;
|
|
//for (coh->f_est = FDMDV_FCENTRE-40.0; coh->f_est <= FDMDV_FCENTRE+40.0; coh->f_est += 40.0)
|
|
while(!ns_done){
|
|
|
|
/* Use slower freq estimator; only do one chunk of freq range */
|
|
if(coh->freq_est_mode_reduced){
|
|
coh->f_est -= 20;
|
|
if(coh->f_est < FDMDV_FCENTRE - 60.0){
|
|
coh->f_est = FDMDV_FCENTRE + 60;
|
|
}
|
|
ns_done = 1;
|
|
}else{
|
|
/* we can test +/- 20Hz, so we break this up into 3 tests to cover +/- 60Hz */
|
|
if(coh->f_est > FDMDV_FCENTRE+40.0) ns_done = 1;
|
|
}
|
|
|
|
if (coh->verbose)
|
|
fprintf(stderr, " [%d] acohpsk.f_est: %f +/- 20\n", coh->frame, (double)coh->f_est);
|
|
|
|
/* we are out of sync so reset f_est and process two frames to clean out memories */
|
|
|
|
rate_Fs_rx_processing(coh, ch_symb, coh->ch_fdm_frame_buf, &coh->f_est, NSW*NSYMROWPILOT, COHPSK_M, 0);
|
|
for (i=0; i<NSW-1; i++) {
|
|
update_ct_symb_buf(coh->ct_symb_buf, &ch_symb[i*NSYMROWPILOT]);
|
|
}
|
|
frame_sync_fine_freq_est(coh, &ch_symb[(NSW-1)*NSYMROWPILOT], sync, &anext_sync);
|
|
|
|
if (anext_sync == 1) {
|
|
//printf(" [%d] acohpsk.ratio: %f\n", f, coh->ratio);
|
|
if (coh->ratio > max_ratio) {
|
|
max_ratio = coh->ratio;
|
|
f_est = coh->f_est - coh->f_fine_est;
|
|
next_sync = anext_sync;
|
|
}
|
|
}
|
|
|
|
if(!coh->freq_est_mode_reduced){
|
|
coh->f_est += 40;
|
|
}
|
|
}
|
|
|
|
if (next_sync == 1) {
|
|
|
|
/* we've found a sync candidate!
|
|
re-process last NSW frames with adjusted f_est then check again */
|
|
|
|
coh->f_est = f_est;
|
|
|
|
if (coh->verbose)
|
|
fprintf(stderr, " [%d] trying sync and f_est: %f\n", coh->frame, (double)coh->f_est);
|
|
|
|
rate_Fs_rx_processing(coh, ch_symb, coh->ch_fdm_frame_buf, &coh->f_est, NSW*NSYMROWPILOT, COHPSK_M, 0);
|
|
for (i=0; i<NSW-1; i++) {
|
|
update_ct_symb_buf(coh->ct_symb_buf, &ch_symb[i*NSYMROWPILOT]);
|
|
}
|
|
/*
|
|
for(i=0; i<NSW*NSYMROWPILOT; i++) {
|
|
printf("%f %f\n", ch_symb[i][0].real, ch_symb[i][0].imag);
|
|
}
|
|
*/
|
|
/*
|
|
for(i=0; i<NCT_SYMB_BUF; i++) {
|
|
printf("%f %f\n", coh->ct_symb_buf[i][0].real, coh->ct_symb_buf[i][0].imag);
|
|
}
|
|
*/
|
|
frame_sync_fine_freq_est(coh, &ch_symb[(NSW-1)*NSYMROWPILOT], sync, &next_sync);
|
|
|
|
if (fabs(coh->f_fine_est) > 2.0) {
|
|
if (coh->verbose)
|
|
fprintf(stderr, " [%d] Hmm %f is a bit big :(\n", coh->frame, (double)coh->f_fine_est);
|
|
next_sync = 0;
|
|
}
|
|
}
|
|
|
|
if (next_sync == 1) {
|
|
/* OK we are in sync!
|
|
demodulate first frame (demod completed below) */
|
|
|
|
if (coh->verbose)
|
|
fprintf(stderr, " [%d] in sync! f_est: %f ratio: %f \n", coh->frame, (double)coh->f_est, (double)coh->ratio);
|
|
for(r=0; r<NSYMROWPILOT+2; r++)
|
|
for(c=0; c<COHPSK_NC*ND; c++)
|
|
coh->ct_symb_ff_buf[r][c] = coh->ct_symb_buf[coh->ct+r][c];
|
|
}
|
|
}
|
|
|
|
/* If in sync just do sample rate processing on latest frame */
|
|
|
|
if (sync == 1) {
|
|
rate_Fs_rx_processing(coh, ch_symb, rx_fdm, &coh->f_est, NSYMROWPILOT, coh->nin, 1);
|
|
frame_sync_fine_freq_est(coh, ch_symb, sync, &next_sync);
|
|
|
|
for(r=0; r<2; r++)
|
|
for(c=0; c<COHPSK_NC*ND; c++)
|
|
coh->ct_symb_ff_buf[r][c] = coh->ct_symb_ff_buf[r+NSYMROWPILOT][c];
|
|
for(; r<NSYMROWPILOT+2; r++)
|
|
for(c=0; c<COHPSK_NC*ND; c++)
|
|
coh->ct_symb_ff_buf[r][c] = coh->ct_symb_buf[coh->ct+r][c];
|
|
}
|
|
|
|
/* if we are in sync complete demodulation with symbol rate processing */
|
|
|
|
*sync_good = 0;
|
|
if ((next_sync == 1) || (sync == 1)) {
|
|
qpsk_symbols_to_bits(coh, rx_bits, coh->ct_symb_ff_buf);
|
|
*sync_good = 1;
|
|
}
|
|
|
|
sync = sync_state_machine(coh, sync, next_sync);
|
|
coh->sync = sync;
|
|
|
|
/* work out how many samples we need for the next call to account
|
|
for differences in tx and rx sample clocks */
|
|
|
|
nin = COHPSK_M;
|
|
if (sync == 1) {
|
|
if (coh->rx_timing > COHPSK_M/P)
|
|
nin = COHPSK_M + COHPSK_M/P;
|
|
if (coh->rx_timing < -COHPSK_M/P)
|
|
nin = COHPSK_M - COHPSK_M/P;
|
|
}
|
|
coh->nin = nin;
|
|
*nin_frame = (NSYMROWPILOT-1)*COHPSK_M + nin;
|
|
//if (coh->verbose)
|
|
// fprintf(stderr, "%f %d %d\n", coh->rx_timing, nin, *nin_frame);
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: cohpsk_fs_offset()
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: May 2015
|
|
|
|
Simulates small Fs offset between mod and demod.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
int cohpsk_fs_offset(COMP out[], COMP in[], int n, float sample_rate_ppm)
|
|
{
|
|
double tin, f;
|
|
int tout, t1, t2;
|
|
|
|
tin = 0.0; tout = 0;
|
|
while (tin < n) {
|
|
t1 = floor(tin);
|
|
t2 = ceil(tin);
|
|
f = tin - t1;
|
|
out[tout].real = (1.0-f)*in[t1].real + f*in[t2].real;
|
|
out[tout].imag = (1.0-f)*in[t1].imag + f*in[t2].imag;
|
|
tout += 1;
|
|
tin += 1.0 + sample_rate_ppm/1E6;
|
|
//printf("tin: %f tout: %d f: %f\n", tin, tout, f);
|
|
}
|
|
|
|
return tout;
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: cohpsk_get_demod_stats()
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: 14 June 2015
|
|
|
|
Fills stats structure with a bunch of demod information.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
void cohpsk_get_demod_stats(struct COHPSK *coh, struct MODEM_STATS *stats)
|
|
{
|
|
int c,r;
|
|
COMP pi_4;
|
|
float new_snr_est;
|
|
|
|
pi_4.real = cosf(M_PI/4.0);
|
|
pi_4.imag = sinf(M_PI/4.0);
|
|
|
|
stats->Nc = COHPSK_NC*ND;
|
|
assert(stats->Nc <= MODEM_STATS_NC_MAX);
|
|
new_snr_est = 20*log10((coh->sig_rms+1E-6)/(coh->noise_rms+1E-6)) - 10*log10(3000.0/700.0);
|
|
stats->snr_est = 0.9*stats->snr_est + 0.1*new_snr_est;
|
|
|
|
//fprintf(stderr, "sig_rms: %f noise_rms: %f snr_est: %f\n", coh->sig_rms, coh->noise_rms, stats->snr_est);
|
|
stats->sync = coh->sync;
|
|
stats->foff = coh->f_est - FDMDV_FCENTRE;
|
|
stats->rx_timing = coh->rx_timing;
|
|
stats->clock_offset = 0.0; /* TODO - implement clock offset estimation */
|
|
|
|
assert(NSYMROW <= MODEM_STATS_NR_MAX);
|
|
stats->nr = NSYMROW;
|
|
for(c=0; c<COHPSK_NC*ND; c++) {
|
|
for (r=0; r<NSYMROW; r++) {
|
|
stats->rx_symbols[r][c] = cmult(coh->rx_symb[r][c], pi_4);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void cohpsk_set_verbose(struct COHPSK *coh, int verbose)
|
|
{
|
|
assert(coh != NULL);
|
|
coh->verbose = verbose;
|
|
}
|
|
|
|
|
|
void cohpsk_set_frame(struct COHPSK *coh, int frame)
|
|
{
|
|
assert(coh != NULL);
|
|
coh->frame = frame;
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: cohpsk_get_test_bits()
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: June 2015
|
|
|
|
Returns a frame of known test bits.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
void cohpsk_get_test_bits(struct COHPSK *coh, int rx_bits[])
|
|
{
|
|
memcpy(rx_bits, coh->ptest_bits_coh_tx, sizeof(int)*COHPSK_BITS_PER_FRAME);
|
|
coh->ptest_bits_coh_tx += COHPSK_BITS_PER_FRAME;
|
|
if (coh->ptest_bits_coh_tx >=coh->ptest_bits_coh_end) {
|
|
coh->ptest_bits_coh_tx = (int*)test_bits_coh;
|
|
}
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: cohpsk_put_test_bits()
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: June 2015
|
|
|
|
Accepts bits from demod and attempts to sync with the known
|
|
test_bits sequence. When synced measures bit errors.
|
|
|
|
Has states to track two separate received test sequences based on
|
|
channel 0 or 1.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
void cohpsk_put_test_bits(struct COHPSK *coh, int *state, short error_pattern[],
|
|
int *bit_errors, char rx_bits_char[], int channel)
|
|
{
|
|
int i, next_state, anerror;
|
|
int rx_bits[COHPSK_BITS_PER_FRAME];
|
|
|
|
assert((channel == 0) || (channel == 1));
|
|
int *ptest_bits_coh_rx = coh->ptest_bits_coh_rx[channel];
|
|
|
|
for(i=0; i<COHPSK_BITS_PER_FRAME; i++) {
|
|
rx_bits[i] = rx_bits_char[i];
|
|
}
|
|
|
|
*bit_errors = 0;
|
|
for(i=0; i<COHPSK_BITS_PER_FRAME; i++) {
|
|
anerror = (rx_bits[i] & 0x1) ^ ptest_bits_coh_rx[i];
|
|
if ((anerror < 0) || (anerror > 1)) {
|
|
fprintf(stderr, "i: %d rx_bits: %d ptest_bits_coh_rx: %d\n", i, rx_bits[i], ptest_bits_coh_rx[i]);
|
|
}
|
|
*bit_errors += anerror;
|
|
error_pattern[i] = anerror;
|
|
}
|
|
|
|
/* state logic */
|
|
|
|
next_state = *state;
|
|
|
|
if (*state == 0) {
|
|
if (*bit_errors < 4) {
|
|
next_state = 1;
|
|
ptest_bits_coh_rx += COHPSK_BITS_PER_FRAME;
|
|
if (ptest_bits_coh_rx >= coh->ptest_bits_coh_end) {
|
|
ptest_bits_coh_rx = (int*)test_bits_coh;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* if 5 frames with large BER reset test frame sync */
|
|
|
|
if (*state > 0) {
|
|
if (*bit_errors > 8) {
|
|
if (*state == 6)
|
|
next_state = 0;
|
|
else
|
|
next_state = *state+1;
|
|
}
|
|
else
|
|
next_state = 1;
|
|
}
|
|
|
|
if (*state > 0) {
|
|
ptest_bits_coh_rx += COHPSK_BITS_PER_FRAME;
|
|
if (ptest_bits_coh_rx >= coh->ptest_bits_coh_end) {
|
|
ptest_bits_coh_rx = (int*)test_bits_coh;
|
|
}
|
|
}
|
|
|
|
//fprintf(stderr, "state: %d next_state: %d bit_errors: %d\n", *state, next_state, *bit_errors);
|
|
|
|
*state = next_state;
|
|
coh->ptest_bits_coh_rx[channel] = ptest_bits_coh_rx;
|
|
}
|
|
|
|
|
|
int cohpsk_error_pattern_size(void) {
|
|
return COHPSK_BITS_PER_FRAME;
|
|
}
|
|
|
|
|
|
float *cohpsk_get_rx_bits_lower(struct COHPSK *coh) {
|
|
return coh->rx_bits_lower;
|
|
}
|
|
|
|
float *cohpsk_get_rx_bits_upper(struct COHPSK *coh) {
|
|
return coh->rx_bits_upper;
|
|
}
|
|
|
|
void cohpsk_set_carrier_ampl(struct COHPSK *coh, int c, float ampl) {
|
|
assert(c < COHPSK_NC*ND);
|
|
coh->carrier_ampl[c] = ampl;
|
|
fprintf(stderr, "cohpsk_set_carrier_ampl: %d %f\n", c, (double)ampl);
|
|
}
|
|
|
|
} // FreeDV
|