1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-04 16:01:14 -05:00
sdrangel/sdrbase/dsp/dspdevicemimoengine.cpp

1359 lines
49 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 F4EXB //
// written by Edouard Griffiths //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QDebug>
#include "dspcommands.h"
#include "basebandsamplesink.h"
#include "basebandsamplesource.h"
#include "devicesamplemimo.h"
#include "mimochannel.h"
#include "dspdevicemimoengine.h"
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::SetSampleMIMO, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::AddBasebandSampleSource, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::RemoveBasebandSampleSource, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::AddMIMOChannel, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::RemoveMIMOChannel, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::AddBasebandSampleSink, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::RemoveBasebandSampleSink, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::AddSpectrumSink, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::RemoveSpectrumSink, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::GetErrorMessage, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::GetMIMODeviceDescription, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::ConfigureCorrection, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::SetSpectrumSinkInput, Message)
DSPDeviceMIMOEngine::DSPDeviceMIMOEngine(uint32_t uid, QObject* parent) :
QThread(parent),
m_uid(uid),
m_stateRx(StNotStarted),
m_stateTx(StNotStarted),
m_deviceSampleMIMO(nullptr),
m_spectrumInputSourceElseSink(true),
m_spectrumInputIndex(0)
{
connect(&m_inputMessageQueue, SIGNAL(messageEnqueued()), this, SLOT(handleInputMessages()), Qt::QueuedConnection);
connect(&m_syncMessenger, SIGNAL(messageSent()), this, SLOT(handleSynchronousMessages()), Qt::QueuedConnection);
moveToThread(this);
}
DSPDeviceMIMOEngine::~DSPDeviceMIMOEngine()
{
stop();
wait();
}
void DSPDeviceMIMOEngine::setStateRx(State state)
{
if (m_stateRx != state)
{
m_stateRx = state;
emit stateChanged();
}
}
void DSPDeviceMIMOEngine::setStateTx(State state)
{
if (m_stateTx != state)
{
m_stateTx = state;
emit stateChanged();
}
}
void DSPDeviceMIMOEngine::run()
{
qDebug() << "DSPDeviceMIMOEngine::run";
setStateRx(StIdle);
setStateTx(StIdle);
exec();
}
void DSPDeviceMIMOEngine::start()
{
qDebug() << "DSPDeviceMIMOEngine::start";
QThread::start();
}
void DSPDeviceMIMOEngine::stop()
{
qDebug() << "DSPDeviceMIMOEngine::stop";
gotoIdle(0); // Rx
gotoIdle(1); // Tx
setStateRx(StNotStarted);
setStateTx(StNotStarted);
QThread::exit();
}
bool DSPDeviceMIMOEngine::initProcess(int subsystemIndex)
{
qDebug() << "DSPDeviceMIMOEngine::initProcess: subsystemIndex: " << subsystemIndex;
if (subsystemIndex == 0) // Rx side
{
DSPAcquisitionInit cmd;
return m_syncMessenger.sendWait(cmd) == StReady;
}
else if (subsystemIndex == 1) // Tx side
{
DSPGenerationInit cmd;
return m_syncMessenger.sendWait(cmd) == StReady;
}
return false;
}
bool DSPDeviceMIMOEngine::startProcess(int subsystemIndex)
{
qDebug() << "DSPDeviceMIMOEngine::startProcess: subsystemIndex: " << subsystemIndex;
if (subsystemIndex == 0) // Rx side
{
DSPAcquisitionStart cmd;
return m_syncMessenger.sendWait(cmd) == StRunning;
}
else if (subsystemIndex == 1) // Tx side
{
DSPGenerationStart cmd;
return m_syncMessenger.sendWait(cmd) == StRunning;
}
return false;
}
void DSPDeviceMIMOEngine::stopProcess(int subsystemIndex)
{
qDebug() << "DSPDeviceMIMOEngine::stopProcess: subsystemIndex: " << subsystemIndex;
if (subsystemIndex == 0) // Rx side
{
DSPAcquisitionStop cmd;
m_syncMessenger.sendWait(cmd);
}
else if (subsystemIndex == 1) // Tx side
{
DSPGenerationStop cmd;
m_syncMessenger.sendWait(cmd);
}
}
void DSPDeviceMIMOEngine::setMIMO(DeviceSampleMIMO* mimo)
{
qDebug() << "DSPDeviceMIMOEngine::setMIMO";
SetSampleMIMO cmd(mimo);
m_syncMessenger.sendWait(cmd);
}
void DSPDeviceMIMOEngine::setMIMOSequence(int sequence)
{
qDebug("DSPDeviceMIMOEngine::setSinkSequence: seq: %d", sequence);
m_sampleMIMOSequence = sequence;
}
void DSPDeviceMIMOEngine::addChannelSource(BasebandSampleSource* source, int index)
{
qDebug() << "DSPDeviceMIMOEngine::addChannelSource: "
<< source->getSourceName().toStdString().c_str()
<< " at: "
<< index;
AddBasebandSampleSource cmd(source, index);
m_syncMessenger.sendWait(cmd);
}
void DSPDeviceMIMOEngine::removeChannelSource(BasebandSampleSource* source, int index)
{
qDebug() << "DSPDeviceMIMOEngine::removeChannelSource: "
<< source->getSourceName().toStdString().c_str()
<< " at: "
<< index;
RemoveBasebandSampleSource cmd(source, index);
m_syncMessenger.sendWait(cmd);
}
void DSPDeviceMIMOEngine::addChannelSink(BasebandSampleSink* sink, int index)
{
qDebug() << "DSPDeviceMIMOEngine::addChannelSink: "
<< sink->getSinkName().toStdString().c_str()
<< " at: "
<< index;
AddBasebandSampleSink cmd(sink, index);
m_syncMessenger.sendWait(cmd);
}
void DSPDeviceMIMOEngine::removeChannelSink(BasebandSampleSink* sink, int index)
{
qDebug() << "DSPDeviceMIMOEngine::removeChannelSink: "
<< sink->getSinkName().toStdString().c_str()
<< " at: "
<< index;
RemoveBasebandSampleSink cmd(sink, index);
m_syncMessenger.sendWait(cmd);
}
void DSPDeviceMIMOEngine::addMIMOChannel(MIMOChannel *channel)
{
qDebug() << "DSPDeviceMIMOEngine::addMIMOChannel: "
<< channel->getMIMOName().toStdString().c_str();
AddMIMOChannel cmd(channel);
m_syncMessenger.sendWait(cmd);
}
void DSPDeviceMIMOEngine::removeMIMOChannel(MIMOChannel *channel)
{
qDebug() << "DSPDeviceMIMOEngine::removeMIMOChannel: "
<< channel->getMIMOName().toStdString().c_str();
RemoveMIMOChannel cmd(channel);
m_syncMessenger.sendWait(cmd);
}
void DSPDeviceMIMOEngine::addSpectrumSink(BasebandSampleSink* spectrumSink)
{
qDebug() << "DSPDeviceMIMOEngine::addSpectrumSink: " << spectrumSink->getSinkName().toStdString().c_str();
AddSpectrumSink cmd(spectrumSink);
m_syncMessenger.sendWait(cmd);
}
void DSPDeviceMIMOEngine::removeSpectrumSink(BasebandSampleSink* spectrumSink)
{
qDebug() << "DSPDeviceSinkEngine::removeSpectrumSink: " << spectrumSink->getSinkName().toStdString().c_str();
DSPRemoveSpectrumSink cmd(spectrumSink);
m_syncMessenger.sendWait(cmd);
}
void DSPDeviceMIMOEngine::setSpectrumSinkInput(bool sourceElseSink, int index)
{
qDebug() << "DSPDeviceSinkEngine::setSpectrumSinkInput: "
<< " sourceElseSink: " << sourceElseSink
<< " index: " << index;
SetSpectrumSinkInput cmd(sourceElseSink, index);
m_syncMessenger.sendWait(cmd);
}
QString DSPDeviceMIMOEngine::errorMessage(int subsystemIndex)
{
qDebug() << "DSPDeviceMIMOEngine::errorMessage: subsystemIndex:" << subsystemIndex;
GetErrorMessage cmd(subsystemIndex);
m_syncMessenger.sendWait(cmd);
return cmd.getErrorMessage();
}
QString DSPDeviceMIMOEngine::deviceDescription()
{
qDebug() << "DSPDeviceMIMOEngine::deviceDescription";
GetMIMODeviceDescription cmd;
m_syncMessenger.sendWait(cmd);
return cmd.getDeviceDescription();
}
void DSPDeviceMIMOEngine::workSampleSinkFifos()
{
SampleMIFifo* sampleFifo = m_deviceSampleMIMO->getSampleMIFifo();
if (!sampleFifo) {
return;
}
unsigned int iPart1Begin;
unsigned int iPart1End;
unsigned int iPart2Begin;
unsigned int iPart2End;
const std::vector<SampleVector>& data = sampleFifo->getData();
//unsigned int samplesDone = 0;
while ((sampleFifo->fillSync() > 0) && (m_inputMessageQueue.size() == 0))
{
//unsigned int count = sampleFifo->readSync(sampleFifo->fillSync(), iPart1Begin, iPart1End, iPart2Begin, iPart2End);
sampleFifo->readSync(iPart1Begin, iPart1End, iPart2Begin, iPart2End);
if (iPart1Begin != iPart1End)
{
for (unsigned int stream = 0; stream < data.size(); stream++) {
workSamplesSink(data[stream].begin() + iPart1Begin, data[stream].begin() + iPart1End, stream);
}
}
if (iPart2Begin != iPart2End)
{
for (unsigned int stream = 0; stream < data.size(); stream++) {
workSamplesSink(data[stream].begin() + iPart2Begin, data[stream].begin() + iPart2End, stream);
}
}
}
}
void DSPDeviceMIMOEngine::workSampleSourceFifos()
{
SampleMOFifo* sampleFifo = m_deviceSampleMIMO->getSampleMOFifo();
if (!sampleFifo) {
return;
}
std::vector<SampleVector::iterator> vbegin;
std::vector<SampleVector>& data = sampleFifo->getData();
unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End;
unsigned int remainder = sampleFifo->remainderSync();
while ((remainder > 0) && (m_inputMessageQueue.size() == 0))
{
sampleFifo->writeSync(remainder, iPart1Begin, iPart1End, iPart2Begin, iPart2End);
// pull samples from the sources by stream
if (iPart1Begin != iPart1End)
{
for (unsigned int streamIndex = 0; streamIndex < sampleFifo->getNbStreams(); streamIndex++) {
workSamplesSource(data[streamIndex], iPart1Begin, iPart1End, streamIndex);
}
}
if (iPart2Begin != iPart2End)
{
for (unsigned int streamIndex = 0; streamIndex < sampleFifo->getNbStreams(); streamIndex++) {
workSamplesSource(data[streamIndex], iPart2Begin, iPart2End, streamIndex);
}
}
// get new remainder
remainder = sampleFifo->remainderSync();
}
}
void DSPDeviceMIMOEngine::workSampleSinkFifo(unsigned int streamIndex)
{
SampleMIFifo* sampleFifo = m_deviceSampleMIMO->getSampleMIFifo();
if (!sampleFifo) {
return;
}
SampleVector::const_iterator part1begin;
SampleVector::const_iterator part1end;
SampleVector::const_iterator part2begin;
SampleVector::const_iterator part2end;
while ((sampleFifo->fillAsync(streamIndex) > 0) && (m_inputMessageQueue.size() == 0))
{
//unsigned int count = sampleFifo->readAsync(sampleFifo->fillAsync(stream), &part1begin, &part1end, &part2begin, &part2end, stream);
sampleFifo->readAsync(&part1begin, &part1end, &part2begin, &part2end, streamIndex);
if (part1begin != part1end) { // first part of FIFO data
workSamplesSink(part1begin, part1end, streamIndex);
}
if (part2begin != part2end) { // second part of FIFO data (used when block wraps around)
workSamplesSink(part2begin, part2end, streamIndex);
}
}
}
void DSPDeviceMIMOEngine::workSampleSourceFifo(unsigned int streamIndex)
{
SampleMOFifo* sampleFifo = m_deviceSampleMIMO->getSampleMOFifo();
if (!sampleFifo) {
return;
}
SampleVector& data = sampleFifo->getData(streamIndex);
unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End;
unsigned int amount = sampleFifo->remainderAsync(streamIndex);
while ((amount > 0) && (m_inputMessageQueue.size() == 0))
{
sampleFifo->writeAsync(amount, iPart1Begin, iPart1End, iPart2Begin, iPart2End, streamIndex);
// part1
if (iPart1Begin != iPart1End) {
workSamplesSource(data, iPart1Begin, iPart1End, streamIndex);
}
// part2
if (iPart2Begin != iPart2End) {
workSamplesSource(data, iPart2Begin, iPart2End, streamIndex);
}
// get new amount
amount = sampleFifo->remainderAsync(streamIndex);
}
}
/**
* Routes samples from device source FIFO to sink channels that are registered for the FIFO
* Routes samples from source channels registered for the FIFO to the device sink FIFO
*/
void DSPDeviceMIMOEngine::workSamplesSink(const SampleVector::const_iterator& vbegin, const SampleVector::const_iterator& vend, unsigned int streamIndex)
{
bool positiveOnly = false;
// DC and IQ corrections
// if (m_sourcesCorrections[streamIndex].m_dcOffsetCorrection) {
// iqCorrections(vbegin, vend, streamIndex, m_sourcesCorrections[streamIndex].m_iqImbalanceCorrection);
// }
// feed data to direct sinks
if (streamIndex < m_basebandSampleSinks.size())
{
for (BasebandSampleSinks::const_iterator it = m_basebandSampleSinks[streamIndex].begin(); it != m_basebandSampleSinks[streamIndex].end(); ++it) {
(*it)->feed(vbegin, vend, positiveOnly);
}
}
// possibly feed data to spectrum sink
if ((m_spectrumSink) && (m_spectrumInputSourceElseSink) && (streamIndex == m_spectrumInputIndex)) {
m_spectrumSink->feed(vbegin, vend, positiveOnly);
}
// feed data to MIMO channels
for (MIMOChannels::const_iterator it = m_mimoChannels.begin(); it != m_mimoChannels.end(); ++it) {
(*it)->feed(vbegin, vend, streamIndex);
}
}
void DSPDeviceMIMOEngine::workSamplesSource(SampleVector& data, unsigned int iBegin, unsigned int iEnd, unsigned int streamIndex)
{
unsigned int nbSamples = iEnd - iBegin;
SampleVector::iterator begin = data.begin() + iBegin;
// pull data from MIMO channels
for (MIMOChannels::const_iterator it = m_mimoChannels.begin(); it != m_mimoChannels.end(); ++it) {
(*it)->pull(begin, nbSamples, streamIndex);
}
if (m_mimoChannels.size() == 0) // Process single stream channels only if there are no MIMO channels
{
if (m_basebandSampleSources[streamIndex].size() == 0)
{
m_sourceZeroBuffers[streamIndex].allocate(nbSamples, Sample{0,0});
std::copy(
m_sourceZeroBuffers[streamIndex].m_vector.begin(),
m_sourceZeroBuffers[streamIndex].m_vector.begin() + nbSamples,
begin
);
}
else if (m_basebandSampleSources[streamIndex].size() == 1)
{
BasebandSampleSource *sampleSource = m_basebandSampleSources[streamIndex].front();
sampleSource->pull(begin, nbSamples);
}
else
{
m_sourceSampleBuffers[streamIndex].allocate(nbSamples);
BasebandSampleSources::const_iterator srcIt = m_basebandSampleSources[streamIndex].begin();
BasebandSampleSource *sampleSource = *srcIt;
sampleSource->pull(begin, nbSamples);
++srcIt;
m_sumIndex = 1;
for (; srcIt != m_basebandSampleSources[streamIndex].end(); ++srcIt, m_sumIndex++)
{
sampleSource = *srcIt;
SampleVector::iterator aBegin = m_sourceSampleBuffers[streamIndex].m_vector.begin();
sampleSource->pull(aBegin, nbSamples);
std::transform(
aBegin,
aBegin + nbSamples,
begin,
begin,
[this](Sample& a, const Sample& b) -> Sample {
FixReal den = m_sumIndex + 1; // at each stage scale sum by n/n+1 and input by 1/n+1
FixReal nom = m_sumIndex; // so that final sum is scaled by N (number of channels)
FixReal x = a.real()/den + nom*(b.real()/den);
FixReal y = a.imag()/den + nom*(b.imag()/den);
return Sample{x, y};
}
);
}
}
}
// possibly feed data to spectrum sink
if ((m_spectrumSink) && (!m_spectrumInputSourceElseSink) && (streamIndex == m_spectrumInputIndex)) {
m_spectrumSink->feed(begin, begin + nbSamples, false);
}
}
// notStarted -> idle -> init -> running -+
// ^ |
// +-----------------------+
DSPDeviceMIMOEngine::State DSPDeviceMIMOEngine::gotoIdle(int subsystemIndex)
{
qDebug() << "DSPDeviceMIMOEngine::gotoIdle: subsystemIndex:" << subsystemIndex;
if (!m_deviceSampleMIMO) {
return StIdle;
}
if (subsystemIndex == 0) // Rx
{
switch (m_stateRx) {
case StNotStarted:
return StNotStarted;
case StIdle:
case StError:
return StIdle;
case StReady:
case StRunning:
break;
}
m_deviceSampleMIMO->stopRx(); // stop everything
std::vector<BasebandSampleSinks>::const_iterator vbit = m_basebandSampleSinks.begin();
for (; vbit != m_basebandSampleSinks.end(); ++vbit)
{
for (BasebandSampleSinks::const_iterator it = vbit->begin(); it != vbit->end(); ++it)
{
qDebug() << "DSPDeviceMIMOEngine::gotoIdle: stopping BasebandSampleSink: " << (*it)->getSinkName().toStdString().c_str();
(*it)->stop();
}
}
for (MIMOChannels::const_iterator it = m_mimoChannels.begin(); it != m_mimoChannels.end(); ++it)
{
qDebug() << "DSPDeviceMIMOEngine::gotoIdle: stopping MIMOChannel sinks: " << (*it)->getMIMOName().toStdString().c_str();
(*it)->stopSinks();
}
}
else if (subsystemIndex == 1) // Tx
{
switch (m_stateTx) {
case StNotStarted:
return StNotStarted;
case StIdle:
case StError:
return StIdle;
case StReady:
case StRunning:
break;
}
m_deviceSampleMIMO->stopTx(); // stop everything
std::vector<BasebandSampleSources>::const_iterator vSourceIt = m_basebandSampleSources.begin();
for (; vSourceIt != m_basebandSampleSources.end(); vSourceIt++)
{
for (BasebandSampleSources::const_iterator it = vSourceIt->begin(); it != vSourceIt->end(); ++it)
{
qDebug() << "DSPDeviceMIMOEngine::gotoIdle: stopping BasebandSampleSource(" << (*it)->getSourceName().toStdString().c_str() << ")";
(*it)->stop();
}
}
for (MIMOChannels::const_iterator it = m_mimoChannels.begin(); it != m_mimoChannels.end(); ++it)
{
qDebug() << "DSPDeviceMIMOEngine::gotoIdle: stopping MIMOChannel sources: " << (*it)->getMIMOName().toStdString().c_str();
(*it)->stopSources();
}
}
else
{
return StIdle;
}
m_deviceDescription.clear();
return StIdle;
}
DSPDeviceMIMOEngine::State DSPDeviceMIMOEngine::gotoInit(int subsystemIndex)
{
if (!m_deviceSampleMIMO) {
return gotoError(subsystemIndex, "No sample MIMO configured");
}
m_deviceDescription = m_deviceSampleMIMO->getDeviceDescription();
qDebug() << "DSPDeviceMIMOEngine::gotoInit:"
<< "subsystemIndex: " << subsystemIndex
<< "m_deviceDescription: " << m_deviceDescription.toStdString().c_str();
if (subsystemIndex == 0) // Rx
{
switch(m_stateRx) {
case StNotStarted:
return StNotStarted;
case StRunning: // FIXME: assumes it goes first through idle state. Could we get back to init from running directly?
return StRunning;
case StReady:
return StReady;
case StIdle:
case StError:
break;
}
// init: pass sample rate and center frequency to all sample rate and/or center frequency dependent sinks and wait for completion
for (unsigned int isource = 0; isource < m_deviceSampleMIMO->getNbSourceStreams(); isource++)
{
if (isource < m_sourcesCorrections.size())
{
m_sourcesCorrections[isource].m_iOffset = 0;
m_sourcesCorrections[isource].m_qOffset = 0;
m_sourcesCorrections[isource].m_iRange = 1 << 16;
m_sourcesCorrections[isource].m_qRange = 1 << 16;
}
quint64 sourceCenterFrequency = m_deviceSampleMIMO->getSourceCenterFrequency(isource);
int sourceStreamSampleRate = m_deviceSampleMIMO->getSourceSampleRate(isource);
qDebug("DSPDeviceMIMOEngine::gotoInit: m_sourceCenterFrequencies[%d] = %llu", isource, sourceCenterFrequency);
qDebug("DSPDeviceMIMOEngine::gotoInit: m_sourceStreamSampleRates[%d] = %d", isource, sourceStreamSampleRate);
DSPSignalNotification notif(sourceStreamSampleRate, sourceCenterFrequency);
if (isource < m_basebandSampleSinks.size())
{
for (BasebandSampleSinks::const_iterator it = m_basebandSampleSinks[isource].begin(); it != m_basebandSampleSinks[isource].end(); ++it)
{
qDebug() << "DSPDeviceMIMOEngine::gotoInit: initializing " << (*it)->getSinkName().toStdString().c_str();
(*it)->pushMessage(new DSPSignalNotification(notif));
}
}
}
}
else if (subsystemIndex == 1) // Tx
{
switch(m_stateTx) {
case StNotStarted:
return StNotStarted;
case StRunning: // FIXME: assumes it goes first through idle state. Could we get back to init from running directly?
return StRunning;
case StReady:
return StReady;
case StIdle:
case StError:
break;
}
for (unsigned int isink = 0; isink < m_deviceSampleMIMO->getNbSinkStreams(); isink++)
{
quint64 sinkCenterFrequency = m_deviceSampleMIMO->getSinkCenterFrequency(isink);
int sinkStreamSampleRate = m_deviceSampleMIMO->getSinkSampleRate(isink);
qDebug("DSPDeviceMIMOEngine::gotoInit: m_sinkCenterFrequencies[%d] = %llu", isink, sinkCenterFrequency);
qDebug("DSPDeviceMIMOEngine::gotoInit: m_sinkStreamSampleRates[%d] = %d", isink, sinkStreamSampleRate);
DSPSignalNotification notif(sinkStreamSampleRate, sinkCenterFrequency);
if (isink < m_basebandSampleSources.size())
{
for (BasebandSampleSources::const_iterator it = m_basebandSampleSources[isink].begin(); it != m_basebandSampleSources[isink].end(); ++it)
{
qDebug() << "DSPDeviceMIMOEngine::gotoInit: initializing BasebandSampleSource(" << (*it)->getSourceName().toStdString().c_str() << ")";
(*it)->pushMessage(new DSPSignalNotification(notif));
}
}
}
}
return StReady;
}
DSPDeviceMIMOEngine::State DSPDeviceMIMOEngine::gotoRunning(int subsystemIndex)
{
qDebug() << "DSPDeviceMIMOEngine::gotoRunning: subsystemIndex:" << subsystemIndex;
if (!m_deviceSampleMIMO) {
return gotoError(subsystemIndex, "DSPDeviceMIMOEngine::gotoRunning: No sample source configured");
}
qDebug() << "DSPDeviceMIMOEngine::gotoRunning:" << m_deviceDescription.toStdString().c_str() << "started";
if (subsystemIndex == 0) // Rx
{
switch (m_stateRx)
{
case StNotStarted:
return StNotStarted;
case StIdle:
return StIdle;
case StRunning:
return StRunning;
case StReady:
case StError:
break;
}
if (!m_deviceSampleMIMO->startRx()) { // Start everything
return gotoError(0, "Could not start sample source");
}
std::vector<BasebandSampleSinks>::const_iterator vbit = m_basebandSampleSinks.begin();
for (; vbit != m_basebandSampleSinks.end(); ++vbit)
{
for (BasebandSampleSinks::const_iterator it = vbit->begin(); it != vbit->end(); ++it)
{
qDebug() << "DSPDeviceMIMOEngine::gotoRunning: starting BasebandSampleSink: " << (*it)->getSinkName().toStdString().c_str();
(*it)->start();
}
}
for (MIMOChannels::const_iterator it = m_mimoChannels.begin(); it != m_mimoChannels.end(); ++it)
{
qDebug() << "DSPDeviceMIMOEngine::gotoRunning: starting MIMOChannel sinks: " << (*it)->getMIMOName().toStdString().c_str();
(*it)->startSinks();
}
}
else if (subsystemIndex == 1) // Tx
{
switch (m_stateTx)
{
case StNotStarted:
return StNotStarted;
case StIdle:
return StIdle;
case StRunning:
return StRunning;
case StReady:
case StError:
break;
}
if (!m_deviceSampleMIMO->startTx()) { // Start everything
return gotoError(1, "Could not start sample sink");
}
std::vector<BasebandSampleSources>::const_iterator vSourceIt = m_basebandSampleSources.begin();
for (; vSourceIt != m_basebandSampleSources.end(); vSourceIt++)
{
for (BasebandSampleSources::const_iterator it = vSourceIt->begin(); it != vSourceIt->end(); ++it)
{
qDebug() << "DSPDeviceMIMOEngine::gotoRunning: starting BasebandSampleSource(" << (*it)->getSourceName().toStdString().c_str() << ")";
(*it)->start();
}
}
for (MIMOChannels::const_iterator it = m_mimoChannels.begin(); it != m_mimoChannels.end(); ++it)
{
qDebug() << "DSPDeviceMIMOEngine::gotoRunning: starting MIMOChannel sources: " << (*it)->getMIMOName().toStdString().c_str();
(*it)->startSources();
}
}
qDebug() << "DSPDeviceMIMOEngine::gotoRunning:input message queue pending: " << m_inputMessageQueue.size();
return StRunning;
}
DSPDeviceMIMOEngine::State DSPDeviceMIMOEngine::gotoError(int subsystemIndex, const QString& errorMessage)
{
qDebug() << "DSPDeviceMIMOEngine::gotoError: "
<< " subsystemIndex: " << subsystemIndex
<< " errorMessage: " << errorMessage;
if (subsystemIndex == 0)
{
m_errorMessageRx = errorMessage;
setStateRx(StError);
}
else if (subsystemIndex == 1)
{
m_errorMessageTx = errorMessage;
setStateTx(StError);
}
return StError;
}
void DSPDeviceMIMOEngine::handleDataRxSync()
{
if (m_stateRx == StRunning) {
workSampleSinkFifos();
}
}
void DSPDeviceMIMOEngine::handleDataRxAsync(int streamIndex)
{
if (m_stateRx == StRunning) {
workSampleSinkFifo(streamIndex);
}
}
void DSPDeviceMIMOEngine::handleDataTxSync()
{
if (m_stateTx == StRunning) {
workSampleSourceFifos();
}
}
void DSPDeviceMIMOEngine::handleDataTxAsync(int streamIndex)
{
if (m_stateTx == StRunning) {
workSampleSourceFifo(streamIndex);
}
}
void DSPDeviceMIMOEngine::handleSetMIMO(DeviceSampleMIMO* mimo)
{
m_deviceSampleMIMO = mimo;
if (!mimo) { // Early leave
return;
}
for (unsigned int i = 0; i < m_deviceSampleMIMO->getNbSinkFifos(); i++)
{
m_basebandSampleSinks.push_back(BasebandSampleSinks());
m_sourcesCorrections.push_back(SourceCorrection());
}
for (unsigned int i = 0; i < m_deviceSampleMIMO->getNbSourceFifos(); i++)
{
m_basebandSampleSources.push_back(BasebandSampleSources());
m_sourceSampleBuffers.push_back(IncrementalVector<Sample>());
m_sourceZeroBuffers.push_back(IncrementalVector<Sample>());
}
if (m_deviceSampleMIMO->getMIMOType() == DeviceSampleMIMO::MIMOHalfSynchronous) // synchronous FIFOs on Rx and not with Tx
{
qDebug("DSPDeviceMIMOEngine::handleSetMIMO: synchronous sources set %s", qPrintable(mimo->getDeviceDescription()));
// connect(m_deviceSampleMIMO->getSampleSinkFifo(m_sampleSinkConnectionIndexes[0]), SIGNAL(dataReady()), this, SLOT(handleData()), Qt::QueuedConnection);
QObject::connect(
m_deviceSampleMIMO->getSampleMIFifo(),
&SampleMIFifo::dataSyncReady,
this,
&DSPDeviceMIMOEngine::handleDataRxSync,
Qt::QueuedConnection
);
QObject::connect(
m_deviceSampleMIMO->getSampleMOFifo(),
&SampleMOFifo::dataReadSync,
this,
&DSPDeviceMIMOEngine::handleDataTxSync,
Qt::QueuedConnection
);
}
else if (m_deviceSampleMIMO->getMIMOType() == DeviceSampleMIMO::MIMOAsynchronous) // asynchronous FIFOs
{
for (unsigned int stream = 0; stream < m_deviceSampleMIMO->getNbSourceStreams(); stream++)
{
qDebug("DSPDeviceMIMOEngine::handleSetMIMO: asynchronous sources set %s channel %u",
qPrintable(mimo->getDeviceDescription()), stream);
QObject::connect(
m_deviceSampleMIMO->getSampleMIFifo(),
&SampleMIFifo::dataAsyncReady,
this,
&DSPDeviceMIMOEngine::handleDataRxAsync,
Qt::QueuedConnection
);
QObject::connect(
m_deviceSampleMIMO->getSampleMOFifo(),
&SampleMOFifo::dataReadAsync,
this,
&DSPDeviceMIMOEngine::handleDataTxAsync,
Qt::QueuedConnection
);
// QObject::connect(
// m_deviceSampleMIMO->getSampleSinkFifo(stream),
// &SampleSinkFifo::dataReady,
// this,
// [=](){ this->handleDataRxAsync(stream); },
// Qt::QueuedConnection
// );
}
}
}
void DSPDeviceMIMOEngine::handleSynchronousMessages()
{
Message *message = m_syncMessenger.getMessage();
qDebug() << "DSPDeviceMIMOEngine::handleSynchronousMessages: " << message->getIdentifier();
State returnState = StNotStarted;
if (DSPAcquisitionInit::match(*message))
{
setStateRx(gotoIdle(0));
if (m_stateRx == StIdle) {
setStateRx(gotoInit(0)); // State goes ready if init is performed
}
returnState = m_stateRx;
}
else if (DSPAcquisitionStart::match(*message))
{
if (m_stateRx == StReady) {
setStateRx(gotoRunning(0));
}
returnState = m_stateRx;
}
else if (DSPAcquisitionStop::match(*message))
{
setStateRx(gotoIdle(0));
returnState = m_stateRx;
}
else if (DSPGenerationInit::match(*message))
{
setStateTx(gotoIdle(1));
if (m_stateTx == StIdle) {
setStateTx(gotoInit(1)); // State goes ready if init is performed
}
returnState = m_stateTx;
}
else if (DSPGenerationStart::match(*message))
{
if (m_stateTx == StReady) {
setStateTx(gotoRunning(1));
}
returnState = m_stateTx;
}
else if (DSPGenerationStop::match(*message))
{
setStateTx(gotoIdle(1));
returnState = m_stateTx;
}
else if (GetMIMODeviceDescription::match(*message))
{
((GetMIMODeviceDescription*) message)->setDeviceDescription(m_deviceDescription);
}
else if (GetErrorMessage::match(*message))
{
GetErrorMessage *cmd = (GetErrorMessage *) message;
int subsystemIndex = cmd->getSubsystemIndex();
if (subsystemIndex == 0) {
cmd->setErrorMessage(m_errorMessageRx);
} else if (subsystemIndex == 1) {
cmd->setErrorMessage(m_errorMessageTx);
} else {
cmd->setErrorMessage("Not implemented");
}
}
else if (SetSampleMIMO::match(*message)) {
handleSetMIMO(((SetSampleMIMO*) message)->getSampleMIMO());
}
else if (AddBasebandSampleSink::match(*message))
{
const AddBasebandSampleSink *msg = (AddBasebandSampleSink *) message;
BasebandSampleSink* sink = msg->getSampleSink();
unsigned int isource = msg->getIndex();
if (isource < m_basebandSampleSinks.size())
{
m_basebandSampleSinks[isource].push_back(sink);
// initialize sample rate and center frequency in the sink:
int sourceStreamSampleRate = m_deviceSampleMIMO->getSourceSampleRate(isource);
quint64 sourceCenterFrequency = m_deviceSampleMIMO->getSourceCenterFrequency(isource);
DSPSignalNotification *msg = new DSPSignalNotification(sourceStreamSampleRate, sourceCenterFrequency);
sink->pushMessage(msg);
// start the sink:
if (m_stateRx == StRunning) {
sink->start();
}
}
}
else if (RemoveBasebandSampleSink::match(*message))
{
const RemoveBasebandSampleSink *msg = (RemoveBasebandSampleSink *) message;
BasebandSampleSink* sink = ((DSPRemoveBasebandSampleSink*) message)->getSampleSink();
unsigned int isource = msg->getIndex();
if (isource < m_basebandSampleSinks.size())
{
if (m_stateRx == StRunning) {
sink->stop();
}
m_basebandSampleSinks[isource].remove(sink);
}
}
else if (AddBasebandSampleSource::match(*message))
{
const AddBasebandSampleSource *msg = (AddBasebandSampleSource *) message;
BasebandSampleSource *sampleSource = msg->getSampleSource();
unsigned int isink = msg->getIndex();
if (isink < m_basebandSampleSources.size())
{
m_basebandSampleSources[isink].push_back(sampleSource);
// initialize sample rate and center frequency in the sink:
int sinkStreamSampleRate = m_deviceSampleMIMO->getSinkSampleRate(isink);
quint64 sinkCenterFrequency = m_deviceSampleMIMO->getSinkCenterFrequency(isink);
DSPSignalNotification *msg = new DSPSignalNotification(sinkStreamSampleRate, sinkCenterFrequency);
sampleSource->pushMessage(msg);
// start the sink:
if (m_stateTx == StRunning) {
sampleSource->start();
}
}
}
else if (RemoveBasebandSampleSource::match(*message))
{
const RemoveBasebandSampleSource *msg = (RemoveBasebandSampleSource *) message;
BasebandSampleSource* sampleSource = msg->getSampleSource();
unsigned int isink = msg->getIndex();
if (isink < m_basebandSampleSources.size())
{
sampleSource->stop();
m_basebandSampleSources[isink].remove(sampleSource);
}
}
else if (AddMIMOChannel::match(*message))
{
const AddMIMOChannel *msg = (AddMIMOChannel *) message;
MIMOChannel *channel = msg->getChannel();
m_mimoChannels.push_back(channel);
for (unsigned int isource = 0; isource < m_deviceSampleMIMO->getNbSourceStreams(); isource++)
{
DSPMIMOSignalNotification *notif = new DSPMIMOSignalNotification(
m_deviceSampleMIMO->getSourceSampleRate(isource),
m_deviceSampleMIMO->getSourceCenterFrequency(isource),
true,
isource
);
channel->pushMessage(notif);
}
for (unsigned int isink = 0; isink < m_deviceSampleMIMO->getNbSinkStreams(); isink++)
{
DSPMIMOSignalNotification *notif = new DSPMIMOSignalNotification(
m_deviceSampleMIMO->getSinkSampleRate(isink),
m_deviceSampleMIMO->getSinkCenterFrequency(isink),
false,
isink
);
channel->pushMessage(notif);
}
if (m_stateRx == StRunning) {
channel->startSinks();
}
if (m_stateTx == StRunning) {
channel->startSources();
}
}
else if (RemoveMIMOChannel::match(*message))
{
const RemoveMIMOChannel *msg = (RemoveMIMOChannel *) message;
MIMOChannel *channel = msg->getChannel();
channel->stopSinks();
channel->stopSources();
m_mimoChannels.remove(channel);
}
else if (AddSpectrumSink::match(*message))
{
m_spectrumSink = ((AddSpectrumSink*) message)->getSampleSink();
}
else if (RemoveSpectrumSink::match(*message))
{
BasebandSampleSink* spectrumSink = ((DSPRemoveSpectrumSink*) message)->getSampleSink();
spectrumSink->stop();
m_spectrumSink = nullptr;
}
else if (SetSpectrumSinkInput::match(*message))
{
const SetSpectrumSinkInput *msg = (SetSpectrumSinkInput *) message;
bool spectrumInputSourceElseSink = msg->getSourceElseSink();
unsigned int spectrumInputIndex = msg->getIndex();
if ((spectrumInputSourceElseSink != m_spectrumInputSourceElseSink) || (spectrumInputIndex != m_spectrumInputIndex))
{
if ((!spectrumInputSourceElseSink) && (spectrumInputIndex < m_deviceSampleMIMO->getNbSinkStreams())) // add the source listener
{
if (m_spectrumSink)
{
DSPSignalNotification *notif = new DSPSignalNotification(
m_deviceSampleMIMO->getSinkSampleRate(spectrumInputIndex),
m_deviceSampleMIMO->getSinkCenterFrequency(spectrumInputIndex));
m_spectrumSink->pushMessage(notif);
}
}
if (m_spectrumSink && (spectrumInputSourceElseSink) && (spectrumInputIndex < m_deviceSampleMIMO->getNbSinkFifos()))
{
DSPSignalNotification *notif = new DSPSignalNotification(
m_deviceSampleMIMO->getSourceSampleRate(spectrumInputIndex),
m_deviceSampleMIMO->getSourceCenterFrequency(spectrumInputIndex));
m_spectrumSink->pushMessage(notif);
}
m_spectrumInputSourceElseSink = spectrumInputSourceElseSink;
m_spectrumInputIndex = spectrumInputIndex;
}
}
m_syncMessenger.done(returnState);
}
void DSPDeviceMIMOEngine::handleInputMessages()
{
Message* message;
while ((message = m_inputMessageQueue.pop()) != 0)
{
qDebug("DSPDeviceMIMOEngine::handleInputMessages: message: %s", message->getIdentifier());
if (ConfigureCorrection::match(*message))
{
ConfigureCorrection* conf = (ConfigureCorrection*) message;
unsigned int isource = conf->getIndex();
if (isource < m_sourcesCorrections.size())
{
m_sourcesCorrections[isource].m_iqImbalanceCorrection = conf->getIQImbalanceCorrection();
if (m_sourcesCorrections[isource].m_dcOffsetCorrection != conf->getDCOffsetCorrection())
{
m_sourcesCorrections[isource].m_dcOffsetCorrection = conf->getDCOffsetCorrection();
m_sourcesCorrections[isource].m_iOffset = 0;
m_sourcesCorrections[isource].m_qOffset = 0;
if (m_sourcesCorrections[isource].m_iqImbalanceCorrection != conf->getIQImbalanceCorrection())
{
m_sourcesCorrections[isource].m_iqImbalanceCorrection = conf->getIQImbalanceCorrection();
m_sourcesCorrections[isource].m_iRange = 1 << 16;
m_sourcesCorrections[isource].m_qRange = 1 << 16;
m_sourcesCorrections[isource].m_imbalance = 65536;
}
}
m_sourcesCorrections[isource].m_iBeta.reset();
m_sourcesCorrections[isource].m_qBeta.reset();
m_sourcesCorrections[isource].m_avgAmp.reset();
m_sourcesCorrections[isource].m_avgII.reset();
m_sourcesCorrections[isource].m_avgII2.reset();
m_sourcesCorrections[isource].m_avgIQ.reset();
m_sourcesCorrections[isource].m_avgPhi.reset();
m_sourcesCorrections[isource].m_avgQQ2.reset();
m_sourcesCorrections[isource].m_iBeta.reset();
m_sourcesCorrections[isource].m_qBeta.reset();
}
delete message;
}
else if (DSPMIMOSignalNotification::match(*message))
{
DSPMIMOSignalNotification *notif = (DSPMIMOSignalNotification *) message;
// update DSP values
bool sourceElseSink = notif->getSourceOrSink();
unsigned int istream = notif->getIndex();
int sampleRate = notif->getSampleRate();
qint64 centerFrequency = notif->getCenterFrequency();
qDebug() << "DeviceMIMOEngine::handleInputMessages: DSPMIMOSignalNotification:"
<< " sourceElseSink: " << sourceElseSink
<< " istream: " << istream
<< " sampleRate: " << sampleRate
<< " centerFrequency: " << centerFrequency;
for (MIMOChannels::const_iterator it = m_mimoChannels.begin(); it != m_mimoChannels.end(); ++it)
{
DSPMIMOSignalNotification *message = new DSPMIMOSignalNotification(*notif);
(*it)->pushMessage(message);
}
if (m_deviceSampleMIMO)
{
if (sourceElseSink)
{
if ((istream < m_deviceSampleMIMO->getNbSourceStreams()))
{
// forward source changes to ancillary sinks
if (istream < m_basebandSampleSinks.size())
{
for (BasebandSampleSinks::const_iterator it = m_basebandSampleSinks[istream].begin(); it != m_basebandSampleSinks[istream].end(); ++it)
{
DSPSignalNotification *message = new DSPSignalNotification(sampleRate, centerFrequency);
qDebug() << "DSPDeviceMIMOEngine::handleInputMessages: starting " << (*it)->getSinkName().toStdString().c_str();
(*it)->pushMessage(message);
}
}
// forward changes to MIMO GUI input queue
MessageQueue *guiMessageQueue = m_deviceSampleMIMO->getMessageQueueToGUI();
qDebug("DeviceMIMOEngine::handleInputMessages: DSPMIMOSignalNotification: guiMessageQueue: %p", guiMessageQueue);
if (guiMessageQueue) {
DSPMIMOSignalNotification* rep = new DSPMIMOSignalNotification(*notif); // make a copy for the MIMO GUI
guiMessageQueue->push(rep);
}
// forward changes to spectrum sink if currently active
if (m_spectrumSink && m_spectrumInputSourceElseSink && (m_spectrumInputIndex == istream))
{
DSPSignalNotification *spectrumNotif = new DSPSignalNotification(sampleRate, centerFrequency);
m_spectrumSink->pushMessage(spectrumNotif);
}
}
}
else
{
if ((istream < m_deviceSampleMIMO->getNbSinkStreams()))
{
// forward source changes to channel sources with immediate execution (no queuing)
if (istream < m_basebandSampleSources.size())
{
for (BasebandSampleSources::const_iterator it = m_basebandSampleSources[istream].begin(); it != m_basebandSampleSources[istream].end(); ++it)
{
DSPSignalNotification *message = new DSPSignalNotification(sampleRate, centerFrequency);
qDebug() << "DSPDeviceMIMOEngine::handleSinkMessages: forward message to BasebandSampleSource(" << (*it)->getSourceName().toStdString().c_str() << ")";
(*it)->pushMessage(message);
}
}
// forward changes to MIMO GUI input queue
MessageQueue *guiMessageQueue = m_deviceSampleMIMO->getMessageQueueToGUI();
qDebug("DSPDeviceMIMOEngine::handleInputMessages: DSPSignalNotification: guiMessageQueue: %p", guiMessageQueue);
if (guiMessageQueue) {
DSPMIMOSignalNotification* rep = new DSPMIMOSignalNotification(*notif); // make a copy for the source GUI
guiMessageQueue->push(rep);
}
// forward changes to spectrum sink if currently active
if (m_spectrumSink && !m_spectrumInputSourceElseSink && (m_spectrumInputIndex == istream))
{
DSPSignalNotification *spectrumNotif = new DSPSignalNotification(sampleRate, centerFrequency);
m_spectrumSink->pushMessage(spectrumNotif);
}
}
}
}
delete message;
}
}
}
void DSPDeviceMIMOEngine::configureCorrections(bool dcOffsetCorrection, bool iqImbalanceCorrection, int isource)
{
qDebug() << "DSPDeviceMIMOEngine::configureCorrections";
ConfigureCorrection* cmd = new ConfigureCorrection(dcOffsetCorrection, iqImbalanceCorrection, isource);
m_inputMessageQueue.push(cmd);
}
void DSPDeviceMIMOEngine::iqCorrections(SampleVector::iterator begin, SampleVector::iterator end, int isource, bool imbalanceCorrection)
{
for(SampleVector::iterator it = begin; it < end; it++)
{
m_sourcesCorrections[isource].m_iBeta(it->real());
m_sourcesCorrections[isource].m_qBeta(it->imag());
if (imbalanceCorrection)
{
#if IMBALANCE_INT
// acquisition
int64_t xi = (it->m_real - (int32_t) m_sourcesCorrections[isource].m_iBeta) << 5;
int64_t xq = (it->m_imag - (int32_t) m_sourcesCorrections[isource].m_qBeta) << 5;
// phase imbalance
m_sourcesCorrections[isource].m_avgII((xi*xi)>>28); // <I", I">
m_sourcesCorrections[isource].m_avgIQ((xi*xq)>>28); // <I", Q">
if ((int64_t) m_sourcesCorrections[isource].m_avgII != 0)
{
int64_t phi = (((int64_t) m_sourcesCorrections[isource].m_avgIQ)<<28) / (int64_t) m_sourcesCorrections[isource].m_avgII;
m_sourcesCorrections[isource].m_avgPhi(phi);
}
int64_t corrPhi = (((int64_t) m_sourcesCorrections[isource].m_avgPhi) * xq) >> 28; //(m_avgPhi.asDouble()/16777216.0) * ((double) xq);
int64_t yi = xi - corrPhi;
int64_t yq = xq;
// amplitude I/Q imbalance
m_sourcesCorrections[isource].m_avgII2((yi*yi)>>28); // <I, I>
m_sourcesCorrections[isource].m_avgQQ2((yq*yq)>>28); // <Q, Q>
if ((int64_t) m_sourcesCorrections[isource].m_avgQQ2 != 0)
{
int64_t a = (((int64_t) m_sourcesCorrections[isource].m_avgII2)<<28) / (int64_t) m_sourcesCorrections[isource].m_avgQQ2;
Fixed<int64_t, 28> fA(Fixed<int64_t, 28>::internal(), a);
Fixed<int64_t, 28> sqrtA = sqrt((Fixed<int64_t, 28>) fA);
m_sourcesCorrections[isource].m_avgAmp(sqrtA.as_internal());
}
int64_t zq = (((int64_t) m_sourcesCorrections[isource].m_avgAmp) * yq) >> 28;
it->m_real = yi >> 5;
it->m_imag = zq >> 5;
#else
// DC correction and conversion
float xi = (it->m_real - (int32_t) m_sourcesCorrections[isource].m_iBeta) / SDR_RX_SCALEF;
float xq = (it->m_imag - (int32_t) m_sourcesCorrections[isource].m_qBeta) / SDR_RX_SCALEF;
// phase imbalance
m_sourcesCorrections[isource].m_avgII(xi*xi); // <I", I">
m_sourcesCorrections[isource].m_avgIQ(xi*xq); // <I", Q">
if (m_sourcesCorrections[isource].m_avgII.asDouble() != 0) {
m_sourcesCorrections[isource].m_avgPhi(m_sourcesCorrections[isource].m_avgIQ.asDouble()/m_sourcesCorrections[isource].m_avgII.asDouble());
}
float& yi = xi; // the in phase remains the reference
float yq = xq - m_sourcesCorrections[isource].m_avgPhi.asDouble()*xi;
// amplitude I/Q imbalance
m_sourcesCorrections[isource].m_avgII2(yi*yi); // <I, I>
m_sourcesCorrections[isource].m_avgQQ2(yq*yq); // <Q, Q>
if (m_sourcesCorrections[isource].m_avgQQ2.asDouble() != 0) {
m_sourcesCorrections[isource].m_avgAmp(sqrt(m_sourcesCorrections[isource].m_avgII2.asDouble() / m_sourcesCorrections[isource].m_avgQQ2.asDouble()));
}
// final correction
float& zi = yi; // the in phase remains the reference
float zq = m_sourcesCorrections[isource].m_avgAmp.asDouble() * yq;
// convert and store
it->m_real = zi * SDR_RX_SCALEF;
it->m_imag = zq * SDR_RX_SCALEF;
#endif
}
else
{
// DC correction only
it->m_real -= (int32_t) m_sourcesCorrections[isource].m_iBeta;
it->m_imag -= (int32_t) m_sourcesCorrections[isource].m_qBeta;
}
}
}