1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-09-21 04:16:34 -04:00
sdrangel/plugins/channelrx/wdsprx/wdsprxsink.cpp

480 lines
18 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2024 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <QTime>
#include <QDebug>
#include "dsp/spectrumvis.h"
#include "dsp/datafifo.h"
#include "util/db.h"
#include "util/messagequeue.h"
#include "maincore.h"
#include "RXA.hpp"
#include "nbp.hpp"
#include "meter.hpp"
#include "patchpanel.hpp"
#include "wcpAGC.hpp"
#include "wdsprxsink.h"
const int WDSPRxSink::m_ssbFftLen = 2048;
const int WDSPRxSink::m_wdspSampleRate = 48000;
const int WDSPRxSink::m_wdspBufSize = 512;
WDSPRxSink::SpectrumProbe::SpectrumProbe(SampleVector& sampleVector) :
m_sampleVector(sampleVector),
m_spanLog2(0),
m_dsb(false),
m_usb(true),
m_sum(0)
{}
void WDSPRxSink::SpectrumProbe::setSpanLog2(int spanLog2)
{
m_spanLog2 = spanLog2;
}
void WDSPRxSink::SpectrumProbe::proceed(const float *in, int nb_samples)
{
int decim = 1<<(m_spanLog2 - 1);
unsigned char decim_mask = decim - 1; // counter LSB bit mask for decimation by 2^(m_scaleLog2 - 1)
for (int i = 0; i < nb_samples; i++)
{
float cr = in[2*i+1];
float ci = in[2*i];
m_sum += std::complex<float>{cr, ci};
if (decim == 1)
{
m_sampleVector.push_back(Sample(cr*SDR_RX_SCALEF, ci*SDR_RX_SCALEF));
}
else
{
if (!(m_undersampleCount++ & decim_mask))
{
float avgr = m_sum.real() / decim;
float avgi = m_sum.imag() / decim;
if (!m_dsb & !m_usb)
{ // invert spectrum for LSB
m_sampleVector.push_back(Sample(avgi*SDR_RX_SCALEF, avgr*SDR_RX_SCALEF));
}
else
{
m_sampleVector.push_back(Sample(avgr*SDR_RX_SCALEF, avgi*SDR_RX_SCALEF));
}
m_sum = 0;
}
}
}
}
WDSPRxSink::WDSPRxSink() :
m_squelchDelayLine(2*48000),
m_audioActive(false),
m_spectrumSink(nullptr),
m_spectrumProbe(m_sampleBuffer),
m_inCount(0),
m_audioFifo(24000),
m_audioSampleRate(48000)
{
m_Bandwidth = 5000;
m_volume = 2.0;
m_channelSampleRate = 48000;
m_channelFrequencyOffset = 0;
m_audioBuffer.resize(m_audioSampleRate / 10);
m_audioBufferFill = 0;
m_undersampleCount = 0;
m_demodBuffer.resize(1<<12);
m_demodBufferFill = 0;
m_sAvg = 0.0;
m_sPeak = 0.0;
m_sCount = 1;
m_rxa = WDSP::RXA::create_rxa(
m_wdspSampleRate, // input samplerate
m_wdspSampleRate, // output samplerate
m_wdspSampleRate, // sample rate for mainstream dsp processing (dsp)
m_wdspBufSize // number complex samples processed per buffer in mainstream dsp processing
);
m_rxa->setSpectrumProbe(&m_spectrumProbe);
WDSP::RXA::SetPassband(*m_rxa, 0, m_Bandwidth);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
applySettings(m_settings, true);
}
WDSPRxSink::~WDSPRxSink()
{
WDSP::RXA::destroy_rxa(m_rxa);
}
void WDSPRxSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
{
if (m_channelSampleRate == 0) {
return;
}
Complex ci;
for(SampleVector::const_iterator it = begin; it < end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if (m_interpolatorDistance < 1.0f) // interpolate
{
while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
else
{
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
}
}
void WDSPRxSink::getMagSqLevels(double& avg, double& peak, int& nbSamples)
{
avg = m_sAvg;
peak = m_sPeak;
nbSamples = m_sCount;
}
void WDSPRxSink::processOneSample(Complex &ci)
{
m_rxa->get_inbuff()[2*m_inCount] = ci.imag() / SDR_RX_SCALEF;
m_rxa->get_inbuff()[2*m_inCount+1] = ci.real() / SDR_RX_SCALEF;
if (++m_inCount == m_rxa->get_insize())
{
WDSP::RXA::xrxa(m_rxa);
m_sCount = m_wdspBufSize;
m_sAvg = WDSP::METER::GetMeter(*m_rxa, WDSP::RXA::RXA_S_AV);
m_sPeak = WDSP::METER::GetMeter(*m_rxa, WDSP::RXA::RXA_S_PK);
for (int i = 0; i < m_rxa->get_outsize(); i++)
{
if (m_settings.m_audioMute)
{
m_audioBuffer[m_audioBufferFill].r = 0;
m_audioBuffer[m_audioBufferFill].l = 0;
}
else
{
const double& cr = m_rxa->get_outbuff()[2*i+1];
const double& ci = m_rxa->get_outbuff()[2*i];
qint16 zr = cr * 32768.0;
qint16 zi = ci * 32768.0;
m_audioBuffer[m_audioBufferFill].r = zr * m_volume;
m_audioBuffer[m_audioBufferFill].l = zi * m_volume;
if (m_settings.m_audioBinaural)
{
m_demodBuffer[m_demodBufferFill++] = zr * m_volume;
m_demodBuffer[m_demodBufferFill++] = zi * m_volume;
}
else
{
Real demod = (zr + zi) * 0.7;
qint16 sample = (qint16)(demod * m_volume);
m_demodBuffer[m_demodBufferFill++] = sample;
}
if (m_demodBufferFill >= m_demodBuffer.size())
{
QList<ObjectPipe*> dataPipes;
MainCore::instance()->getDataPipes().getDataPipes(m_channel, "demod", dataPipes);
if (dataPipes.size() > 0)
{
QList<ObjectPipe*>::iterator it = dataPipes.begin();
for (; it != dataPipes.end(); ++it)
{
DataFifo *fifo = qobject_cast<DataFifo*>((*it)->m_element);
if (fifo)
{
fifo->write(
(quint8*) &m_demodBuffer[0],
m_demodBuffer.size() * sizeof(qint16),
m_settings.m_audioBinaural ? DataFifo::DataTypeCI16 : DataFifo::DataTypeI16
);
}
}
}
m_demodBufferFill = 0;
}
} // audio sample
if (++m_audioBufferFill == m_audioBuffer.size())
{
std::size_t res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], std::min(m_audioBufferFill, m_audioBuffer.size()));
if (res != m_audioBufferFill) {
qDebug("WDSPRxSink::processOneSample: %lu/%lu samples written", res, m_audioBufferFill);
}
m_audioBufferFill = 0;
}
} // result loop
if (m_spectrumSink && (m_sampleBuffer.size() != 0))
{
m_spectrumSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), !m_settings.m_dsb);
m_sampleBuffer.clear();
}
m_inCount = 0;
}
}
void WDSPRxSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "WDSPRxSink::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset;
if ((m_channelFrequencyOffset != channelFrequencyOffset) ||
(m_channelSampleRate != channelSampleRate) || force)
{
m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
}
if ((m_channelSampleRate != channelSampleRate) || force)
{
Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > channelSampleRate ? channelSampleRate : (m_Bandwidth * 1.5f);
m_interpolator.create(16, channelSampleRate, interpolatorBandwidth, 2.0f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) channelSampleRate / (Real) m_wdspSampleRate;
}
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
}
void WDSPRxSink::applyAudioSampleRate(int sampleRate)
{
qDebug("WDSPRxSink::applyAudioSampleRate: %d", sampleRate);
Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > m_channelSampleRate ? m_channelSampleRate : (m_Bandwidth * 1.5f);
m_interpolator.create(16, m_channelSampleRate, interpolatorBandwidth, 2.0f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_channelSampleRate / (Real) m_wdspSampleRate;
WDSP::RXA::setOutputSamplerate(m_rxa, sampleRate);
m_audioFifo.setSize(sampleRate);
m_audioSampleRate = sampleRate;
m_audioBuffer.resize(sampleRate / 10);
m_audioBufferFill = 0;
QList<ObjectPipe*> pipes;
MainCore::instance()->getMessagePipes().getMessagePipes(m_channel, "reportdemod", pipes);
if (pipes.size() > 0)
{
for (const auto& pipe : pipes)
{
MessageQueue* messageQueue = qobject_cast<MessageQueue*>(pipe->m_element);
if (messageQueue)
{
MainCore::MsgChannelDemodReport *msg = MainCore::MsgChannelDemodReport::create(m_channel, sampleRate);
messageQueue->push(msg);
}
}
}
}
void WDSPRxSink::applySettings(const WDSPRxSettings& settings, bool force)
{
qDebug() << "WDSPRxSink::applySettings:"
<< " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
<< " m_filterIndex: " << settings.m_filterIndex
<< " m_spanLog2: " << settings.m_filterBank[settings.m_filterIndex].m_spanLog2
<< " m_highCutoff: " << settings.m_filterBank[settings.m_filterIndex].m_highCutoff
<< " m_lowCutoff: " << settings.m_filterBank[settings.m_filterIndex].m_lowCutoff
<< " m_fftWindow: " << settings.m_filterBank[settings.m_filterIndex].m_fftWindow << "]"
<< " m_volume: " << settings.m_volume
<< " m_audioBinaural: " << settings.m_audioBinaural
<< " m_audioFlipChannels: " << settings.m_audioFlipChannels
<< " m_dsb: " << settings.m_dsb
<< " m_audioMute: " << settings.m_audioMute
<< " m_agcActive: " << settings.m_agc
<< " m_agcMode: " << settings.m_agcMode
<< " m_agcGain: " << settings.m_agcGain
<< " m_agcSlope: " << settings.m_agcSlope
<< " m_agcHangThreshold: " << settings.m_agcHangThreshold
<< " m_audioDeviceName: " << settings.m_audioDeviceName
<< " m_streamIndex: " << settings.m_streamIndex
<< " m_useReverseAPI: " << settings.m_useReverseAPI
<< " m_reverseAPIAddress: " << settings.m_reverseAPIAddress
<< " m_reverseAPIPort: " << settings.m_reverseAPIPort
<< " m_reverseAPIDeviceIndex: " << settings.m_reverseAPIDeviceIndex
<< " m_reverseAPIChannelIndex: " << settings.m_reverseAPIChannelIndex
<< " force: " << force;
if((m_settings.m_filterBank[m_settings.m_filterIndex].m_highCutoff != settings.m_filterBank[settings.m_filterIndex].m_highCutoff) ||
(m_settings.m_filterBank[m_settings.m_filterIndex].m_lowCutoff != settings.m_filterBank[settings.m_filterIndex].m_lowCutoff) ||
(m_settings.m_filterBank[m_settings.m_filterIndex].m_fftWindow != settings.m_filterBank[settings.m_filterIndex].m_fftWindow) ||
(m_settings.m_dsb != settings.m_dsb) || force)
{
float band, low, high, fLow, fHigh;
band = settings.m_filterBank[settings.m_filterIndex].m_highCutoff;
high = band;
low = settings.m_filterBank[settings.m_filterIndex].m_lowCutoff;
if (band < 0)
{
band = -band;
m_spectrumProbe.setUSB(false);
}
else
{
m_spectrumProbe.setUSB(true);
}
m_Bandwidth = band;
if (high < low)
{
if (settings.m_dsb)
{
fLow = high;
fHigh = -high;
m_spectrumProbe.setDSB(true);
}
else
{
fLow = high;
fHigh = low;
m_spectrumProbe.setDSB(false);
}
}
else
{
if (settings.m_dsb)
{
fLow = -high;
fHigh = high;
m_spectrumProbe.setDSB(true);
}
else
{
fLow = low;
fHigh = high;
m_spectrumProbe.setDSB(false);
}
}
Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > m_channelSampleRate ? m_channelSampleRate : (m_Bandwidth * 1.5f);
m_interpolator.create(16, m_channelSampleRate, interpolatorBandwidth, 2.0f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_channelSampleRate / (Real) m_audioSampleRate;
WDSP::RXA::SetPassband(*m_rxa, fLow, fHigh);
WDSP::NBP::NBPSetWindow(*m_rxa, m_settings.m_filterBank[m_settings.m_filterIndex].m_fftWindow);
}
if ((m_settings.m_filterBank[settings.m_filterIndex].m_spanLog2 != settings.m_filterBank[settings.m_filterIndex].m_spanLog2) || force) {
m_spectrumProbe.setSpanLog2(settings.m_filterBank[settings.m_filterIndex].m_spanLog2);
}
if ((m_settings.m_agc != settings.m_agc)
|| (m_settings.m_agcMode != settings.m_agcMode)
|| (m_settings.m_agcSlope != settings.m_agcSlope)
|| (m_settings.m_agcHangThreshold != settings.m_agcHangThreshold)
|| (m_settings.m_agcGain != settings.m_agcGain) || force)
{
WDSP::WCPAGC::SetAGCMode(*m_rxa, settings.m_agc ? (int) settings.m_agcMode + 1 : 0); // SetRXAAGCMode(id, agc);
WDSP::WCPAGC::SetAGCSlope(*m_rxa, settings.m_agcSlope); // SetRXAAGCSlope(id, rx->agc_slope);
WDSP::WCPAGC::SetAGCTop(*m_rxa, (float) settings.m_agcGain); // SetRXAAGCTop(id, rx->agc_gain);
if (settings.m_agc)
{
switch (settings.m_agcMode)
{
case WDSPRxSettings::AGCMode::AGCLong:
WDSP::WCPAGC::SetAGCAttack(*m_rxa, 2); // SetRXAAGCAttack(id, 2);
WDSP::WCPAGC::SetAGCHang(*m_rxa, 2000); // SetRXAAGCHang(id, 2000);
WDSP::WCPAGC::SetAGCDecay(*m_rxa, 2000); // SetRXAAGCDecay(id, 2000);
WDSP::WCPAGC::SetAGCHangThreshold(*m_rxa, settings.m_agcHangThreshold); // SetRXAAGCHangThreshold(id, (int)rx->agc_hang_threshold);
break;
case WDSPRxSettings::AGCMode::AGCSlow:
WDSP::WCPAGC::SetAGCAttack(*m_rxa, 2); // SetRXAAGCAttack(id, 2);
WDSP::WCPAGC::SetAGCHang(*m_rxa, 1000); // SetRXAAGCHang(id, 1000);
WDSP::WCPAGC::SetAGCDecay(*m_rxa, 500); // SetRXAAGCDecay(id, 500);
WDSP::WCPAGC::SetAGCHangThreshold(*m_rxa, settings.m_agcHangThreshold); // SetRXAAGCHangThreshold(id, (int)rx->agc_hang_threshold);
break;
case WDSPRxSettings::AGCMode::AGCMedium:
WDSP::WCPAGC::SetAGCAttack(*m_rxa, 2); // SetRXAAGCAttack(id, 2);
WDSP::WCPAGC::SetAGCHang(*m_rxa, 0); // SetRXAAGCHang(id, 0);
WDSP::WCPAGC::SetAGCDecay(*m_rxa, 250); // SetRXAAGCDecay(id, 250);
WDSP::WCPAGC::SetAGCHangThreshold(*m_rxa, settings.m_agcHangThreshold); // SetRXAAGCHangThreshold(id, 100);
break;
case WDSPRxSettings::AGCMode::AGCFast:
WDSP::WCPAGC::SetAGCAttack(*m_rxa, 2); // SetRXAAGCAttack(id, 2);
WDSP::WCPAGC::SetAGCHang(*m_rxa, 0); // SetRXAAGCHang(id, 0);
WDSP::WCPAGC::SetAGCDecay(*m_rxa, 50); // SetRXAAGCDecay(id, 50);
WDSP::WCPAGC::SetAGCHangThreshold(*m_rxa, settings.m_agcHangThreshold); // SetRXAAGCHangThreshold(id, 100);
break;
}
WDSP::WCPAGC::SetAGCFixed(*m_rxa, 60.0f); // default
}
else
{
WDSP::WCPAGC::SetAGCFixed(*m_rxa, (float) settings.m_agcGain);
}
}
if ((m_settings.m_volume != settings.m_volume) || force)
{
m_volume = settings.m_volume;
m_volume /= 4.0; // for 3276.8
}
if ((m_settings.m_audioBinaural != settings.m_audioBinaural) || force) {
WDSP::PANEL::SetPanelBinaural(*m_rxa, settings.m_audioBinaural ? 1 : 0);
}
if ((m_settings.m_audioFlipChannels != settings.m_audioFlipChannels) || force) {
WDSP::PANEL::SetPanelCopy(*m_rxa, settings.m_audioFlipChannels ? 3 : 0);
}
m_settings = settings;
}