1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-04 16:01:14 -05:00
sdrangel/plugins/channeltx/udpsink/udpsink.cpp

753 lines
27 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QDebug>
#include "SWGChannelSettings.h"
#include "SWGChannelReport.h"
#include "SWGUDPSinkReport.h"
#include "device/devicesinkapi.h"
#include "dsp/upchannelizer.h"
#include "dsp/threadedbasebandsamplesource.h"
#include "dsp/dspcommands.h"
#include "util/db.h"
#include "udpsinkmsg.h"
#include "udpsink.h"
MESSAGE_CLASS_DEFINITION(UDPSink::MsgConfigureUDPSink, Message)
MESSAGE_CLASS_DEFINITION(UDPSink::MsgConfigureChannelizer, Message)
MESSAGE_CLASS_DEFINITION(UDPSink::MsgUDPSinkSpectrum, Message)
MESSAGE_CLASS_DEFINITION(UDPSink::MsgResetReadIndex, Message)
const QString UDPSink::m_channelIdURI = "sdrangel.channeltx.udpsink";
const QString UDPSink::m_channelId = "UDPSink";
UDPSink::UDPSink(DeviceSinkAPI *deviceAPI) :
ChannelSourceAPI(m_channelIdURI),
m_deviceAPI(deviceAPI),
m_basebandSampleRate(48000),
m_outputSampleRate(48000),
m_inputFrequencyOffset(0),
m_squelch(1e-6),
m_spectrum(0),
m_spectrumEnabled(false),
m_spectrumChunkSize(2160),
m_spectrumChunkCounter(0),
m_magsq(1e-10),
m_movingAverage(16, 1e-10),
m_inMovingAverage(480, 1e-10),
m_sampleRateSum(0),
m_sampleRateAvgCounter(0),
m_levelCalcCount(0),
m_peakLevel(0.0f),
m_levelSum(0.0f),
m_levelNbSamples(480),
m_squelchOpen(false),
m_squelchOpenCount(0),
m_squelchCloseCount(0),
m_squelchThreshold(4800),
m_modPhasor(0.0f),
m_SSBFilterBufferIndex(0),
m_settingsMutex(QMutex::Recursive)
{
setObjectName(m_channelId);
m_udpHandler.setFeedbackMessageQueue(&m_inputMessageQueue);
m_SSBFilter = new fftfilt(m_settings.m_lowCutoff / m_settings.m_inputSampleRate, m_settings.m_rfBandwidth / m_settings.m_inputSampleRate, m_ssbFftLen);
m_SSBFilterBuffer = new Complex[m_ssbFftLen>>1]; // filter returns data exactly half of its size
applyChannelSettings(m_basebandSampleRate, m_outputSampleRate, m_inputFrequencyOffset, true);
applySettings(m_settings, true);
m_channelizer = new UpChannelizer(this);
m_threadedChannelizer = new ThreadedBasebandSampleSource(m_channelizer, this);
m_deviceAPI->addThreadedSource(m_threadedChannelizer);
m_deviceAPI->addChannelAPI(this);
}
UDPSink::~UDPSink()
{
m_deviceAPI->removeChannelAPI(this);
m_deviceAPI->removeThreadedSource(m_threadedChannelizer);
delete m_threadedChannelizer;
delete m_channelizer;
delete m_SSBFilter;
delete[] m_SSBFilterBuffer;
}
void UDPSink::start()
{
m_udpHandler.start();
applyChannelSettings(m_basebandSampleRate, m_outputSampleRate, m_inputFrequencyOffset, true);
}
void UDPSink::stop()
{
m_udpHandler.stop();
}
void UDPSink::pull(Sample& sample)
{
if (m_settings.m_channelMute)
{
sample.m_real = 0.0f;
sample.m_imag = 0.0f;
initSquelch(false);
return;
}
Complex ci;
m_settingsMutex.lock();
if (m_interpolatorDistance > 1.0f) // decimate
{
modulateSample();
while (!m_interpolator.decimate(&m_interpolatorDistanceRemain, m_modSample, &ci))
{
modulateSample();
}
}
else
{
if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, m_modSample, &ci))
{
modulateSample();
}
}
m_interpolatorDistanceRemain += m_interpolatorDistance;
ci *= m_carrierNco.nextIQ(); // shift to carrier frequency
m_settingsMutex.unlock();
double magsq = ci.real() * ci.real() + ci.imag() * ci.imag();
magsq /= (SDR_TX_SCALED*SDR_TX_SCALED);
m_movingAverage.feed(magsq);
m_magsq = m_movingAverage.average();
sample.m_real = (FixReal) ci.real();
sample.m_imag = (FixReal) ci.imag();
}
void UDPSink::modulateSample()
{
if (m_settings.m_sampleFormat == UDPSinkSettings::FormatSnLE) // Linear I/Q transponding
{
Sample s;
m_udpHandler.readSample(s);
uint64_t magsq = s.m_real * s.m_real + s.m_imag * s.m_imag;
m_inMovingAverage.feed(magsq/(SDR_TX_SCALED*SDR_TX_SCALED));
m_inMagsq = m_inMovingAverage.average();
calculateSquelch(m_inMagsq);
if (m_squelchOpen)
{
m_modSample.real(s.m_real * m_settings.m_gainOut);
m_modSample.imag(s.m_imag * m_settings.m_gainOut);
calculateLevel(m_modSample);
}
else
{
m_modSample.real(0.0f);
m_modSample.imag(0.0f);
}
}
else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatNFM)
{
qint16 t;
readMonoSample(t);
m_inMovingAverage.feed((t*t)/1073741824.0);
m_inMagsq = m_inMovingAverage.average();
calculateSquelch(m_inMagsq);
if (m_squelchOpen)
{
m_modPhasor += (m_settings.m_fmDeviation / m_settings.m_inputSampleRate) * (t / SDR_TX_SCALEF) * M_PI * 2.0f;
m_modSample.real(cos(m_modPhasor) * 0.3162292f * SDR_TX_SCALEF * m_settings.m_gainOut);
m_modSample.imag(sin(m_modPhasor) * 0.3162292f * SDR_TX_SCALEF * m_settings.m_gainOut);
calculateLevel(m_modSample);
}
else
{
m_modSample.real(0.0f);
m_modSample.imag(0.0f);
}
}
else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatAM)
{
qint16 t;
readMonoSample(t);
m_inMovingAverage.feed((t*t)/(SDR_TX_SCALED*SDR_TX_SCALED));
m_inMagsq = m_inMovingAverage.average();
calculateSquelch(m_inMagsq);
if (m_squelchOpen)
{
m_modSample.real(((t / SDR_TX_SCALEF)*m_settings.m_amModFactor*m_settings.m_gainOut + 1.0f) * (SDR_TX_SCALEF/2)); // modulate and scale zero frequency carrier
m_modSample.imag(0.0f);
calculateLevel(m_modSample);
}
else
{
m_modSample.real(0.0f);
m_modSample.imag(0.0f);
}
}
else if ((m_settings.m_sampleFormat == UDPSinkSettings::FormatLSB) || (m_settings.m_sampleFormat == UDPSinkSettings::FormatUSB))
{
qint16 t;
Complex c, ci;
fftfilt::cmplx *filtered;
int n_out = 0;
readMonoSample(t);
m_inMovingAverage.feed((t*t)/(SDR_TX_SCALED*SDR_TX_SCALED));
m_inMagsq = m_inMovingAverage.average();
calculateSquelch(m_inMagsq);
if (m_squelchOpen)
{
ci.real((t / SDR_TX_SCALEF) * m_settings.m_gainOut);
ci.imag(0.0f);
n_out = m_SSBFilter->runSSB(ci, &filtered, (m_settings.m_sampleFormat == UDPSinkSettings::FormatUSB));
if (n_out > 0)
{
memcpy((void *) m_SSBFilterBuffer, (const void *) filtered, n_out*sizeof(Complex));
m_SSBFilterBufferIndex = 0;
}
c = m_SSBFilterBuffer[m_SSBFilterBufferIndex];
m_modSample.real(m_SSBFilterBuffer[m_SSBFilterBufferIndex].real() * SDR_TX_SCALEF);
m_modSample.imag(m_SSBFilterBuffer[m_SSBFilterBufferIndex].imag() * SDR_TX_SCALEF);
m_SSBFilterBufferIndex++;
calculateLevel(m_modSample);
}
else
{
m_modSample.real(0.0f);
m_modSample.imag(0.0f);
}
}
else
{
m_modSample.real(0.0f);
m_modSample.imag(0.0f);
initSquelch(false);
}
if (m_spectrum && m_spectrumEnabled && (m_spectrumChunkCounter < m_spectrumChunkSize - 1))
{
Sample s;
s.m_real = (FixReal) m_modSample.real();
s.m_imag = (FixReal) m_modSample.imag();
m_sampleBuffer.push_back(s);
m_spectrumChunkCounter++;
}
else if (m_spectrum)
{
m_spectrum->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), false);
m_sampleBuffer.clear();
m_spectrumChunkCounter = 0;
}
}
void UDPSink::calculateLevel(Real sample)
{
if (m_levelCalcCount < m_levelNbSamples)
{
m_peakLevel = std::max(std::fabs(m_peakLevel), sample);
m_levelSum += sample * sample;
m_levelCalcCount++;
}
else
{
qreal rmsLevel = m_levelSum > 0.0 ? sqrt(m_levelSum / m_levelNbSamples) : 0.0;
//qDebug("NFMMod::calculateLevel: %f %f", rmsLevel, m_peakLevel);
emit levelChanged(rmsLevel, m_peakLevel, m_levelNbSamples);
m_peakLevel = 0.0f;
m_levelSum = 0.0f;
m_levelCalcCount = 0;
}
}
void UDPSink::calculateLevel(Complex sample)
{
Real t = std::abs(sample);
if (m_levelCalcCount < m_levelNbSamples)
{
m_peakLevel = std::max(std::fabs(m_peakLevel), t);
m_levelSum += (t * t);
m_levelCalcCount++;
}
else
{
qreal rmsLevel = m_levelSum > 0.0 ? sqrt((m_levelSum/(SDR_TX_SCALED*SDR_TX_SCALED)) / m_levelNbSamples) : 0.0;
emit levelChanged(rmsLevel, m_peakLevel / SDR_TX_SCALEF, m_levelNbSamples);
m_peakLevel = 0.0f;
m_levelSum = 0.0f;
m_levelCalcCount = 0;
}
}
bool UDPSink::handleMessage(const Message& cmd)
{
if (UpChannelizer::MsgChannelizerNotification::match(cmd))
{
UpChannelizer::MsgChannelizerNotification& notif = (UpChannelizer::MsgChannelizerNotification&) cmd;
qDebug() << "UDPSink::handleMessage: MsgChannelizerNotification";
applyChannelSettings(notif.getBasebandSampleRate(), notif.getSampleRate(), notif.getFrequencyOffset());
return true;
}
else if (MsgConfigureChannelizer::match(cmd))
{
MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd;
qDebug() << "UDPSink::handleMessage: MsgConfigureChannelizer:"
<< " sampleRate: " << cfg.getSampleRate()
<< " centerFrequency: " << cfg.getCenterFrequency();
m_channelizer->configure(m_channelizer->getInputMessageQueue(),
cfg.getSampleRate(),
cfg.getCenterFrequency());
return true;
}
else if (MsgConfigureUDPSink::match(cmd))
{
MsgConfigureUDPSink& cfg = (MsgConfigureUDPSink&) cmd;
qDebug() << "UDPSink::handleMessage: MsgConfigureUDPSink";
applySettings(cfg.getSettings(), cfg.getForce());
return true;
}
else if (UDPSinkMessages::MsgSampleRateCorrection::match(cmd))
{
UDPSinkMessages::MsgSampleRateCorrection& cfg = (UDPSinkMessages::MsgSampleRateCorrection&) cmd;
Real newSampleRate = m_actualInputSampleRate + cfg.getCorrectionFactor() * m_actualInputSampleRate;
// exclude values too way out nominal sample rate (20%)
if ((newSampleRate < m_settings.m_inputSampleRate * 1.2) && (newSampleRate > m_settings.m_inputSampleRate * 0.8))
{
m_actualInputSampleRate = newSampleRate;
if ((cfg.getRawDeltaRatio() > -0.05) && (cfg.getRawDeltaRatio() < 0.05))
{
if (m_sampleRateAvgCounter < m_sampleRateAverageItems)
{
m_sampleRateSum += m_actualInputSampleRate;
m_sampleRateAvgCounter++;
}
}
else
{
m_sampleRateSum = 0.0;
m_sampleRateAvgCounter = 0;
}
if (m_sampleRateAvgCounter == m_sampleRateAverageItems)
{
float avgRate = m_sampleRateSum / m_sampleRateAverageItems;
qDebug("UDPSink::handleMessage: MsgSampleRateCorrection: corr: %+.6f new rate: %.0f: avg rate: %.0f",
cfg.getCorrectionFactor(),
m_actualInputSampleRate,
avgRate);
m_actualInputSampleRate = avgRate;
m_sampleRateSum = 0.0;
m_sampleRateAvgCounter = 0;
}
// else
// {
// qDebug("UDPSink::handleMessage: MsgSampleRateCorrection: corr: %+.6f new rate: %.0f",
// cfg.getCorrectionFactor(),
// m_actualInputSampleRate);
// }
m_settingsMutex.lock();
m_interpolatorDistanceRemain = 0;
m_interpolatorConsumed = false;
m_interpolatorDistance = (Real) m_actualInputSampleRate / (Real) m_outputSampleRate;
//m_interpolator.create(48, m_actualInputSampleRate, m_settings.m_rfBandwidth / 2.2, 3.0); // causes clicking: leaving at standard frequency
m_settingsMutex.unlock();
}
return true;
}
else if (MsgUDPSinkSpectrum::match(cmd))
{
MsgUDPSinkSpectrum& spc = (MsgUDPSinkSpectrum&) cmd;
m_spectrumEnabled = spc.getEnabled();
qDebug() << "UDPSink::handleMessage: MsgUDPSinkSpectrum: m_spectrumEnabled: " << m_spectrumEnabled;
return true;
}
else if (MsgResetReadIndex::match(cmd))
{
m_settingsMutex.lock();
m_udpHandler.resetReadIndex();
m_settingsMutex.unlock();
qDebug() << "UDPSink::handleMessage: MsgResetReadIndex";
return true;
}
else if (DSPSignalNotification::match(cmd))
{
return true;
}
else
{
if(m_spectrum != 0)
{
return m_spectrum->handleMessage(cmd);
}
else
{
return false;
}
}
}
void UDPSink::setSpectrum(bool enabled)
{
Message* cmd = MsgUDPSinkSpectrum::create(enabled);
getInputMessageQueue()->push(cmd);
}
void UDPSink::resetReadIndex()
{
Message* cmd = MsgResetReadIndex::create();
getInputMessageQueue()->push(cmd);
}
void UDPSink::applyChannelSettings(int basebandSampleRate, int outputSampleRate, int inputFrequencyOffset, bool force)
{
qDebug() << "UDPSink::applyChannelSettings:"
<< " basebandSampleRate: " << basebandSampleRate
<< " outputSampleRate: " << outputSampleRate
<< " inputFrequencyOffset: " << inputFrequencyOffset;
if ((inputFrequencyOffset != m_inputFrequencyOffset) ||
(outputSampleRate != m_outputSampleRate) || force)
{
m_settingsMutex.lock();
m_carrierNco.setFreq(inputFrequencyOffset, outputSampleRate);
m_settingsMutex.unlock();
}
if (((outputSampleRate != m_outputSampleRate) && (!m_settings.m_autoRWBalance)) || force)
{
m_settingsMutex.lock();
m_interpolatorDistanceRemain = 0;
m_interpolatorConsumed = false;
m_interpolatorDistance = (Real) m_settings.m_inputSampleRate / (Real) outputSampleRate;
m_interpolator.create(48, m_settings.m_inputSampleRate, m_settings.m_rfBandwidth / 2.2, 3.0);
m_settingsMutex.unlock();
}
m_basebandSampleRate = basebandSampleRate;
m_outputSampleRate = outputSampleRate;
m_inputFrequencyOffset = inputFrequencyOffset;
}
void UDPSink::applySettings(const UDPSinkSettings& settings, bool force)
{
qDebug() << "UDPSink::applySettings:"
<< " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
<< " m_sampleFormat: " << settings.m_sampleFormat
<< " m_inputSampleRate: " << settings.m_inputSampleRate
<< " m_rfBandwidth: " << settings.m_rfBandwidth
<< " m_lowCutoff: " << settings.m_lowCutoff
<< " m_fmDeviation: " << settings.m_fmDeviation
<< " m_udpAddressStr: " << settings.m_udpAddress
<< " m_udpPort: " << settings.m_udpPort
<< " m_channelMute: " << settings.m_channelMute
<< " m_gainIn: " << settings.m_gainIn
<< " m_gainOut: " << settings.m_gainOut
<< " m_squelchGate: " << settings.m_squelchGate
<< " m_squelch: " << settings.m_squelch << "dB"
<< " m_squelchEnabled: " << settings.m_squelchEnabled
<< " m_autoRWBalance: " << settings.m_autoRWBalance
<< " m_stereoInput: " << settings.m_stereoInput
<< " force: " << force;
if((settings.m_rfBandwidth != m_settings.m_rfBandwidth) ||
(settings.m_lowCutoff != m_settings.m_lowCutoff) ||
(settings.m_inputSampleRate != m_settings.m_inputSampleRate) || force)
{
m_settingsMutex.lock();
m_interpolatorDistanceRemain = 0;
m_interpolatorConsumed = false;
m_interpolatorDistance = (Real) settings.m_inputSampleRate / (Real) m_outputSampleRate;
m_interpolator.create(48, settings.m_inputSampleRate, settings.m_rfBandwidth / 2.2, 3.0);
m_actualInputSampleRate = settings.m_inputSampleRate;
m_udpHandler.resetReadIndex();
m_sampleRateSum = 0.0;
m_sampleRateAvgCounter = 0;
m_spectrumChunkSize = settings.m_inputSampleRate * 0.05; // 50 ms chunk
m_spectrumChunkCounter = 0;
m_levelNbSamples = settings.m_inputSampleRate * 0.01; // every 10 ms
m_levelCalcCount = 0;
m_peakLevel = 0.0f;
m_levelSum = 0.0f;
m_udpHandler.resizeBuffer(settings.m_inputSampleRate);
m_inMovingAverage.resize(settings.m_inputSampleRate * 0.01, 1e-10); // 10 ms
m_squelchThreshold = settings.m_inputSampleRate * settings.m_squelchGate;
initSquelch(m_squelchOpen);
m_SSBFilter->create_filter(settings.m_lowCutoff / settings.m_inputSampleRate, settings.m_rfBandwidth / settings.m_inputSampleRate);
m_settingsMutex.unlock();
}
if ((settings.m_squelch != m_settings.m_squelch) || force)
{
m_squelch = CalcDb::powerFromdB(settings.m_squelch);
}
if ((settings.m_squelchGate != m_settings.m_squelchGate) || force)
{
m_squelchThreshold = m_outputSampleRate * settings.m_squelchGate;
initSquelch(m_squelchOpen);
}
if ((settings.m_udpAddress != m_settings.m_udpAddress) ||
(settings.m_udpPort != m_settings.m_udpPort) || force)
{
m_settingsMutex.lock();
m_udpHandler.configureUDPLink(settings.m_udpAddress, settings.m_udpPort);
m_settingsMutex.unlock();
}
if ((settings.m_channelMute != m_settings.m_channelMute) || force)
{
if (!settings.m_channelMute) {
m_udpHandler.resetReadIndex();
}
}
if ((settings.m_autoRWBalance != m_settings.m_autoRWBalance) || force)
{
m_settingsMutex.lock();
m_udpHandler.setAutoRWBalance(settings.m_autoRWBalance);
if (!settings.m_autoRWBalance)
{
m_interpolatorDistanceRemain = 0;
m_interpolatorConsumed = false;
m_interpolatorDistance = (Real) settings.m_inputSampleRate / (Real) m_outputSampleRate;
m_interpolator.create(48, settings.m_inputSampleRate, settings.m_rfBandwidth / 2.2, 3.0);
m_actualInputSampleRate = settings.m_inputSampleRate;
m_udpHandler.resetReadIndex();
}
m_settingsMutex.unlock();
}
m_settings = settings;
}
QByteArray UDPSink::serialize() const
{
return m_settings.serialize();
}
bool UDPSink::deserialize(const QByteArray& data)
{
if (m_settings.deserialize(data))
{
MsgConfigureUDPSink *msg = MsgConfigureUDPSink::create(m_settings, true);
m_inputMessageQueue.push(msg);
return true;
}
else
{
m_settings.resetToDefaults();
MsgConfigureUDPSink *msg = MsgConfigureUDPSink::create(m_settings, true);
m_inputMessageQueue.push(msg);
return false;
}
}
int UDPSink::webapiSettingsGet(
SWGSDRangel::SWGChannelSettings& response,
QString& errorMessage __attribute__((unused)))
{
response.setUdpSinkSettings(new SWGSDRangel::SWGUDPSinkSettings());
response.getUdpSinkSettings()->init();
webapiFormatChannelSettings(response, m_settings);
return 200;
}
int UDPSink::webapiSettingsPutPatch(
bool force,
const QStringList& channelSettingsKeys,
SWGSDRangel::SWGChannelSettings& response,
QString& errorMessage __attribute__((unused)))
{
UDPSinkSettings settings = m_settings;
bool frequencyOffsetChanged = false;
if (channelSettingsKeys.contains("sampleFormat")) {
settings.m_sampleFormat = (UDPSinkSettings::SampleFormat) response.getUdpSinkSettings()->getSampleFormat();
}
if (channelSettingsKeys.contains("inputSampleRate")) {
settings.m_inputSampleRate = response.getUdpSinkSettings()->getInputSampleRate();
}
if (channelSettingsKeys.contains("inputFrequencyOffset"))
{
settings.m_inputFrequencyOffset = response.getUdpSinkSettings()->getInputFrequencyOffset();
frequencyOffsetChanged = true;
}
if (channelSettingsKeys.contains("rfBandwidth")) {
settings.m_rfBandwidth = response.getUdpSinkSettings()->getRfBandwidth();
}
if (channelSettingsKeys.contains("lowCutoff")) {
settings.m_lowCutoff = response.getUdpSinkSettings()->getLowCutoff();
}
if (channelSettingsKeys.contains("fmDeviation")) {
settings.m_fmDeviation = response.getUdpSinkSettings()->getFmDeviation();
}
if (channelSettingsKeys.contains("amModFactor")) {
settings.m_amModFactor = response.getUdpSinkSettings()->getAmModFactor();
}
if (channelSettingsKeys.contains("channelMute")) {
settings.m_channelMute = response.getUdpSinkSettings()->getChannelMute() != 0;
}
if (channelSettingsKeys.contains("gainIn")) {
settings.m_gainIn = response.getUdpSinkSettings()->getGainIn();
}
if (channelSettingsKeys.contains("gainOut")) {
settings.m_gainOut = response.getUdpSinkSettings()->getGainOut();
}
if (channelSettingsKeys.contains("squelch")) {
settings.m_squelch = response.getUdpSinkSettings()->getSquelch();
}
if (channelSettingsKeys.contains("squelchGate")) {
settings.m_squelchGate = response.getUdpSinkSettings()->getSquelchGate();
}
if (channelSettingsKeys.contains("squelchEnabled")) {
settings.m_squelchEnabled = response.getUdpSinkSettings()->getSquelchEnabled() != 0;
}
if (channelSettingsKeys.contains("autoRWBalance")) {
settings.m_autoRWBalance = response.getUdpSinkSettings()->getAutoRwBalance() != 0;
}
if (channelSettingsKeys.contains("stereoInput")) {
settings.m_stereoInput = response.getUdpSinkSettings()->getStereoInput() != 0;
}
if (channelSettingsKeys.contains("rgbColor")) {
settings.m_rgbColor = response.getUdpSinkSettings()->getRgbColor();
}
if (channelSettingsKeys.contains("udpAddress")) {
settings.m_udpAddress = *response.getUdpSinkSettings()->getUdpAddress();
}
if (channelSettingsKeys.contains("udpPort")) {
settings.m_udpPort = response.getUdpSinkSettings()->getUdpPort();
}
if (channelSettingsKeys.contains("title")) {
settings.m_title = *response.getUdpSinkSettings()->getTitle();
}
if (frequencyOffsetChanged)
{
UDPSink::MsgConfigureChannelizer *msgChan = UDPSink::MsgConfigureChannelizer::create(
settings.m_inputSampleRate,
settings.m_inputFrequencyOffset);
m_inputMessageQueue.push(msgChan);
}
MsgConfigureUDPSink *msg = MsgConfigureUDPSink::create(settings, force);
m_inputMessageQueue.push(msg);
if (m_guiMessageQueue) // forward to GUI if any
{
MsgConfigureUDPSink *msgToGUI = MsgConfigureUDPSink::create(settings, force);
m_guiMessageQueue->push(msgToGUI);
}
webapiFormatChannelSettings(response, settings);
return 200;
}
int UDPSink::webapiReportGet(
SWGSDRangel::SWGChannelReport& response,
QString& errorMessage __attribute__((unused)))
{
response.setUdpSinkReport(new SWGSDRangel::SWGUDPSinkReport());
response.getUdpSinkReport()->init();
webapiFormatChannelReport(response);
return 200;
}
void UDPSink::webapiFormatChannelSettings(SWGSDRangel::SWGChannelSettings& response, const UDPSinkSettings& settings)
{
response.getUdpSinkSettings()->setSampleFormat((int) settings.m_sampleFormat);
response.getUdpSinkSettings()->setInputSampleRate(settings.m_inputSampleRate);
response.getUdpSinkSettings()->setInputFrequencyOffset(settings.m_inputFrequencyOffset);
response.getUdpSinkSettings()->setRfBandwidth(settings.m_rfBandwidth);
response.getUdpSinkSettings()->setLowCutoff(settings.m_lowCutoff);
response.getUdpSinkSettings()->setFmDeviation(settings.m_fmDeviation);
response.getUdpSinkSettings()->setAmModFactor(settings.m_amModFactor);
response.getUdpSinkSettings()->setChannelMute(settings.m_channelMute ? 1 : 0);
response.getUdpSinkSettings()->setGainIn(settings.m_gainIn);
response.getUdpSinkSettings()->setGainOut(settings.m_gainOut);
response.getUdpSinkSettings()->setSquelch(settings.m_squelch);
response.getUdpSinkSettings()->setSquelchGate(settings.m_squelchGate);
response.getUdpSinkSettings()->setSquelchEnabled(settings.m_squelchEnabled ? 1 : 0);
response.getUdpSinkSettings()->setAutoRwBalance(settings.m_autoRWBalance ? 1 : 0);
response.getUdpSinkSettings()->setStereoInput(settings.m_stereoInput ? 1 : 0);
response.getUdpSinkSettings()->setRgbColor(settings.m_rgbColor);
if (response.getUdpSinkSettings()->getUdpAddress()) {
*response.getUdpSinkSettings()->getUdpAddress() = settings.m_udpAddress;
} else {
response.getUdpSinkSettings()->setUdpAddress(new QString(settings.m_udpAddress));
}
response.getUdpSinkSettings()->setUdpPort(settings.m_udpPort);
if (response.getUdpSinkSettings()->getTitle()) {
*response.getUdpSinkSettings()->getTitle() = settings.m_title;
} else {
response.getUdpSinkSettings()->setTitle(new QString(settings.m_title));
}
}
void UDPSink::webapiFormatChannelReport(SWGSDRangel::SWGChannelReport& response)
{
response.getUdpSinkReport()->setInputPowerDb(CalcDb::dbPower(getInMagSq()));
response.getUdpSinkReport()->setChannelPowerDb(CalcDb::dbPower(getMagSq()));
response.getUdpSinkReport()->setSquelch(m_squelchOpen ? 1 : 0);
response.getUdpSinkReport()->setBufferGauge(getBufferGauge());
response.getUdpSinkReport()->setChannelSampleRate(m_outputSampleRate);
}