1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-12-23 10:05:46 -05:00
sdrangel/sdrbase/dsp/inthalfbandfiltereo1.h

854 lines
28 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016-2019 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// Copyright (C) 2019 Davide Gerhard <rainbow@irh.it> //
// //
// Integer half-band FIR based interpolator and decimator //
// This is the even/odd double buffer variant. Really useful only when SIMD is //
// used //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef SDRBASE_DSP_INTHALFBANDFILTEREO1_H_
#define SDRBASE_DSP_INTHALFBANDFILTEREO1_H_
#include <stdint.h>
#include <cstdlib>
#include "dsp/dsptypes.h"
#include "dsp/hbfiltertraits.h"
//#include "dsp/inthalfbandfiltereo1i.h"
template<uint32_t HBFilterOrder>
class IntHalfbandFilterEO1 {
public:
IntHalfbandFilterEO1();
// downsample by 2, return center part of original spectrum
bool workDecimateCenter(Sample* sample)
{
// insert sample into ring-buffer
storeSample((FixReal) sample->real(), (FixReal) sample->imag());
switch(m_state)
{
case 0:
// advance write-pointer
advancePointer();
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
default:
// save result
doFIR(sample);
// advance write-pointer
advancePointer();
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
// upsample by 2, return center part of original spectrum - double buffer variant
bool workInterpolateCenterZeroStuffing(Sample* sampleIn, Sample *SampleOut)
{
switch(m_state)
{
case 0:
// insert sample into ring-buffer
storeSample((FixReal) 0, (FixReal) 0);
// save result
doFIR(SampleOut);
// advance write-pointer
advancePointer();
// next state
m_state = 1;
// tell caller we didn't consume the sample
return false;
default:
// insert sample into ring-buffer
storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag());
// save result
doFIR(SampleOut);
// advance write-pointer
advancePointer();
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
}
}
/** Optimized upsampler by 2 not calculating FIR with inserted null samples */
bool workInterpolateCenter(Sample* sampleIn, Sample *SampleOut)
{
switch(m_state)
{
case 0:
// return the middle peak
SampleOut->setReal(m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][0]);
SampleOut->setImag(m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][1]);
m_state = 1; // next state
return false; // tell caller we didn't consume the sample
default:
// calculate with non null samples
doInterpolateFIR(SampleOut);
// insert sample into ring double buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][0] = sampleIn->real();
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][1] = sampleIn->imag();
// advance pointer
if (m_ptr < (HBFIRFilterTraits<HBFilterOrder>::hbOrder/2) - 1) {
m_ptr++;
} else {
m_ptr = 0;
}
m_state = 0; // next state
return true; // tell caller we consumed the sample
}
}
bool workDecimateCenter(int32_t *x, int32_t *y)
{
// insert sample into ring-buffer
storeSample32(*x, *y);
switch(m_state)
{
case 0:
// advance write-pointer
advancePointer();
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
default:
// save result
doFIR(x, y);
// advance write-pointer
advancePointer();
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
// downsample by 2, return lower half of original spectrum
bool workDecimateLowerHalf(Sample* sample)
{
switch(m_state)
{
case 0:
// insert sample into ring-buffer
storeSample((FixReal) -sample->imag(), (FixReal) sample->real());
// advance write-pointer
advancePointer();
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
case 1:
// insert sample into ring-buffer
storeSample((FixReal) -sample->real(), (FixReal) -sample->imag());
// save result
doFIR(sample);
// advance write-pointer
advancePointer();
// next state
m_state = 2;
// tell caller we have a new sample
return true;
case 2:
// insert sample into ring-buffer
storeSample((FixReal) sample->imag(), (FixReal) -sample->real());
// advance write-pointer
advancePointer();
// next state
m_state = 3;
// tell caller we don't have a new sample
return false;
default:
// insert sample into ring-buffer
storeSample((FixReal) sample->real(), (FixReal) sample->imag());
// save result
doFIR(sample);
// advance write-pointer
advancePointer();
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
// upsample by 2, from lower half of original spectrum - double buffer variant
bool workInterpolateLowerHalfZeroStuffing(Sample* sampleIn, Sample *sampleOut)
{
Sample s;
switch(m_state)
{
case 0:
// insert sample into ring-buffer
storeSample((FixReal) 0, (FixReal) 0);
// save result
doFIR(&s);
sampleOut->setReal(s.imag());
sampleOut->setImag(-s.real());
// advance write-pointer
advancePointer();
// next state
m_state = 1;
// tell caller we didn't consume the sample
return false;
case 1:
// insert sample into ring-buffer
storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag());
// save result
doFIR(&s);
sampleOut->setReal(-s.real());
sampleOut->setImag(-s.imag());
// advance write-pointer
advancePointer();
// next state
m_state = 2;
// tell caller we consumed the sample
return true;
case 2:
// insert sample into ring-buffer
storeSample((FixReal) 0, (FixReal) 0);
// save result
doFIR(&s);
sampleOut->setReal(-s.imag());
sampleOut->setImag(s.real());
// advance write-pointer
advancePointer();
// next state
m_state = 3;
// tell caller we didn't consume the sample
return false;
default:
// insert sample into ring-buffer
storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag());
// save result
doFIR(&s);
sampleOut->setReal(s.real());
sampleOut->setImag(s.imag());
// advance write-pointer
advancePointer();
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
}
}
/** Optimized upsampler by 2 not calculating FIR with inserted null samples */
bool workInterpolateLowerHalf(Sample* sampleIn, Sample *sampleOut)
{
Sample s;
switch(m_state)
{
case 0:
// return the middle peak
sampleOut->setReal(m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][1]); // imag
sampleOut->setImag(-m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][0]); // - real
m_state = 1; // next state
return false; // tell caller we didn't consume the sample
case 1:
// calculate with non null samples
doInterpolateFIR(&s);
sampleOut->setReal(-s.real());
sampleOut->setImag(-s.imag());
// insert sample into ring double buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][0] = sampleIn->real();
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][1] = sampleIn->imag();
// advance pointer
if (m_ptr < (HBFIRFilterTraits<HBFilterOrder>::hbOrder/2) - 1) {
m_ptr++;
} else {
m_ptr = 0;
}
m_state = 2; // next state
return true; // tell caller we consumed the sample
case 2:
// return the middle peak
sampleOut->setReal(-m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][1]); // - imag
sampleOut->setImag(m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][0]); // real
m_state = 3; // next state
return false; // tell caller we didn't consume the sample
default:
// calculate with non null samples
doInterpolateFIR(&s);
sampleOut->setReal(s.real());
sampleOut->setImag(s.imag());
// insert sample into ring double buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][0] = sampleIn->real();
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][1] = sampleIn->imag();
// advance pointer
if (m_ptr < (HBFIRFilterTraits<HBFilterOrder>::hbOrder/2) - 1) {
m_ptr++;
} else {
m_ptr = 0;
}
m_state = 0; // next state
return true; // tell caller we consumed the sample
}
}
// downsample by 2, return upper half of original spectrum
bool workDecimateUpperHalf(Sample* sample)
{
switch(m_state)
{
case 0:
// insert sample into ring-buffer
storeSample((FixReal) sample->imag(), (FixReal) -sample->real());
// advance write-pointer
advancePointer();
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
case 1:
// insert sample into ring-buffer
storeSample((FixReal) -sample->real(), (FixReal) -sample->imag());
// save result
doFIR(sample);
// advance write-pointer
advancePointer();
// next state
m_state = 2;
// tell caller we have a new sample
return true;
case 2:
// insert sample into ring-buffer
storeSample((FixReal) -sample->imag(), (FixReal) sample->real());
// advance write-pointer
advancePointer();
// next state
m_state = 3;
// tell caller we don't have a new sample
return false;
default:
// insert sample into ring-buffer
storeSample((FixReal) sample->real(), (FixReal) sample->imag());
// save result
doFIR(sample);
// advance write-pointer
advancePointer();
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
// upsample by 2, move original spectrum to upper half - double buffer variant
bool workInterpolateUpperHalfZeroStuffing(Sample* sampleIn, Sample *sampleOut)
{
Sample s;
switch(m_state)
{
case 0:
// insert sample into ring-buffer
storeSample((FixReal) 0, (FixReal) 0);
// save result
doFIR(&s);
sampleOut->setReal(-s.imag());
sampleOut->setImag(s.real());
// advance write-pointer
advancePointer();
// next state
m_state = 1;
// tell caller we didn't consume the sample
return false;
case 1:
// insert sample into ring-buffer
storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag());
// save result
doFIR(&s);
sampleOut->setReal(-s.real());
sampleOut->setImag(-s.imag());
// advance write-pointer
advancePointer();
// next state
m_state = 2;
// tell caller we consumed the sample
return true;
case 2:
// insert sample into ring-buffer
storeSample((FixReal) 0, (FixReal) 0);
// save result
doFIR(&s);
sampleOut->setReal(s.imag());
sampleOut->setImag(-s.real());
// advance write-pointer
advancePointer();
// next state
m_state = 3;
// tell caller we didn't consume the sample
return false;
default:
// insert sample into ring-buffer
storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag());
// save result
doFIR(&s);
sampleOut->setReal(s.real());
sampleOut->setImag(s.imag());
// advance write-pointer
advancePointer();
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
}
}
/** Optimized upsampler by 2 not calculating FIR with inserted null samples */
bool workInterpolateUpperHalf(Sample* sampleIn, Sample *sampleOut)
{
Sample s;
switch(m_state)
{
case 0:
// return the middle peak
sampleOut->setReal(-m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][1]); // - imag
sampleOut->setImag(m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][0]); // + real
m_state = 1; // next state
return false; // tell caller we didn't consume the sample
case 1:
// calculate with non null samples
doInterpolateFIR(&s);
sampleOut->setReal(-s.real());
sampleOut->setImag(-s.imag());
// insert sample into ring double buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][0] = sampleIn->real();
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][1] = sampleIn->imag();
// advance pointer
if (m_ptr < (HBFIRFilterTraits<HBFilterOrder>::hbOrder/2) - 1) {
m_ptr++;
} else {
m_ptr = 0;
}
m_state = 2; // next state
return true; // tell caller we consumed the sample
case 2:
// return the middle peak
sampleOut->setReal(m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][1]); // + imag
sampleOut->setImag(-m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][0]); // - real
m_state = 3; // next state
return false; // tell caller we didn't consume the sample
default:
// calculate with non null samples
doInterpolateFIR(&s);
sampleOut->setReal(s.real());
sampleOut->setImag(s.imag());
// insert sample into ring double buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][0] = sampleIn->real();
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][1] = sampleIn->imag();
// advance pointer
if (m_ptr < (HBFIRFilterTraits<HBFilterOrder>::hbOrder/2) - 1) {
m_ptr++;
} else {
m_ptr = 0;
}
m_state = 0; // next state
return true; // tell caller we consumed the sample
}
}
void myDecimate(const Sample* sample1, Sample* sample2)
{
storeSample((FixReal) sample1->real(), (FixReal) sample1->imag());
advancePointer();
storeSample((FixReal) sample2->real(), (FixReal) sample2->imag());
doFIR(sample2);
advancePointer();
}
void myDecimate(int32_t x1, int32_t y1, int32_t *x2, int32_t *y2)
{
storeSample32(x1, y1);
advancePointer();
storeSample32(*x2, *y2);
doFIR(x2, y2);
advancePointer();
}
/** Simple zero stuffing and filter */
void myInterpolateZeroStuffing(Sample* sample1, Sample* sample2)
{
storeSample((FixReal) sample1->real(), (FixReal) sample1->imag());
doFIR(sample1);
advancePointer();
storeSample((FixReal) 0, (FixReal) 0);
doFIR(sample2);
advancePointer();
}
/** Simple zero stuffing and filter */
void myInterpolateZeroStuffing(int32_t *x1, int32_t *y1, int32_t *x2, int32_t *y2)
{
storeSample32(*x1, *y1);
doFIR(x1, y1);
advancePointer();
storeSample32(0, 0);
doFIR(x2, y2);
advancePointer();
}
/** Optimized upsampler by 2 not calculating FIR with inserted null samples */
void myInterpolate(qint32 *x1, qint32 *y1, qint32 *x2, qint32 *y2)
{
// insert sample into ring double buffer
m_samples[m_ptr][0] = *x1;
m_samples[m_ptr][1] = *y1;
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][0] = *x1;
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][1] = *y1;
// advance pointer
if (m_ptr < (HBFIRFilterTraits<HBFilterOrder>::hbOrder/2) - 1) {
m_ptr++;
} else {
m_ptr = 0;
}
// first output sample calculated with the middle peak
*x1 = m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][0];
*y1 = m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][1];
// second sample calculated with the filter
doInterpolateFIR(x2, y2);
}
void myInterpolateInf(qint32 *x1, qint32 *y1, qint32 *x2, qint32 *y2, qint32 *x3, qint32 *y3, qint32 *x4, qint32 *y4)
{
myInterpolate(x1, y1, x2, y2);
myInterpolate(x3, y3, x4, y4);
// rotation
qint32 x;
x = *x1;
*x1 = *y1;
*y1 = -x;
*x2 = -*x2;
*y2 = -*y2;
x = *x3;
*x3 = -*y3;
*y3 = x;
}
void myInterpolateSup(qint32 *x1, qint32 *y1, qint32 *x2, qint32 *y2, qint32 *x3, qint32 *y3, qint32 *x4, qint32 *y4)
{
myInterpolate(x1, y1, x2, y2);
myInterpolate(x3, y3, x4, y4);
// rotation
qint32 x;
x = *x1;
*x1 = -*y1;
*y1 = x;
*x2 = -*x2;
*y2 = -*y2;
x = *x3;
*x3 = *y3;
*y3 = -x;
}
protected:
int32_t m_even[2][HBFIRFilterTraits<HBFilterOrder>::hbOrder]; // double buffer technique
int32_t m_odd[2][HBFIRFilterTraits<HBFilterOrder>::hbOrder]; // double buffer technique
int32_t m_samples[HBFIRFilterTraits<HBFilterOrder>::hbOrder][2]; // double buffer technique
int m_ptr;
int m_size;
int m_state;
void storeSample(const FixReal& sampleI, const FixReal& sampleQ)
{
if ((m_ptr % 2) == 0)
{
m_even[0][m_ptr/2] = sampleI;
m_even[1][m_ptr/2] = sampleQ;
m_even[0][m_ptr/2 + m_size] = sampleI;
m_even[1][m_ptr/2 + m_size] = sampleQ;
}
else
{
m_odd[0][m_ptr/2] = sampleI;
m_odd[1][m_ptr/2] = sampleQ;
m_odd[0][m_ptr/2 + m_size] = sampleI;
m_odd[1][m_ptr/2 + m_size] = sampleQ;
}
}
void storeSample32(int32_t x, int32_t y)
{
if ((m_ptr % 2) == 0)
{
m_even[0][m_ptr/2] = x;
m_even[1][m_ptr/2] = y;
m_even[0][m_ptr/2 + m_size] = x;
m_even[1][m_ptr/2 + m_size] = y;
}
else
{
m_odd[0][m_ptr/2] = x;
m_odd[1][m_ptr/2] = y;
m_odd[0][m_ptr/2 + m_size] = x;
m_odd[1][m_ptr/2 + m_size] = y;
}
}
void advancePointer()
{
m_ptr = m_ptr + 1 < 2*m_size ? m_ptr + 1: 0;
}
int32_t rand(int32_t mod)
{
return (RAND_MAX/2 - std::rand()) % mod;
}
void doFIR(Sample* sample)
{
int32_t iAcc = 0;
int32_t qAcc = 0;
int a = m_ptr/2 + m_size; // tip pointer
int b = m_ptr/2 + 1; // tail pointer
for (int i = 0; i < HBFIRFilterTraits<HBFilterOrder>::hbOrder / 4; i++)
{
if ((m_ptr % 2) == 0)
{
iAcc += (m_even[0][a] + m_even[0][b]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
qAcc += (m_even[1][a] + m_even[1][b]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
}
else
{
iAcc += (m_odd[0][a] + m_odd[0][b]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
qAcc += (m_odd[1][a] + m_odd[1][b]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
}
a -= 1;
b += 1;
}
if ((m_ptr % 2) == 0)
{
iAcc += ((int32_t)m_odd[0][m_ptr/2 + m_size/2]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
qAcc += ((int32_t)m_odd[1][m_ptr/2 + m_size/2]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
}
else
{
iAcc += ((int32_t)m_even[0][m_ptr/2 + m_size/2 + 1]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
qAcc += ((int32_t)m_even[1][m_ptr/2 + m_size/2 + 1]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
}
sample->setReal(iAcc >> (HBFIRFilterTraits<HBFilterOrder>::hbShift -1));
sample->setImag(qAcc >> (HBFIRFilterTraits<HBFilterOrder>::hbShift -1));
}
void doFIR(int32_t *x, int32_t *y)
{
int32_t iAcc = 0;
int32_t qAcc = 0;
int a = m_ptr/2 + m_size; // tip pointer
int b = m_ptr/2 + 1; // tail pointer
for (int i = 0; i < HBFIRFilterTraits<HBFilterOrder>::hbOrder / 4; i++)
{
if ((m_ptr % 2) == 0)
{
iAcc += (m_even[0][a] + m_even[0][b]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
qAcc += (m_even[1][a] + m_even[1][b]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
}
else
{
iAcc += (m_odd[0][a] + m_odd[0][b]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
qAcc += (m_odd[1][a] + m_odd[1][b]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
}
a -= 1;
b += 1;
}
if ((m_ptr % 2) == 0)
{
iAcc += ((int32_t)m_odd[0][m_ptr/2 + m_size/2]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
qAcc += ((int32_t)m_odd[1][m_ptr/2 + m_size/2]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
}
else
{
iAcc += ((int32_t)m_even[0][m_ptr/2 + m_size/2 + 1]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
qAcc += ((int32_t)m_even[1][m_ptr/2 + m_size/2 + 1]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
}
*x = iAcc >> (HBFIRFilterTraits<HBFilterOrder>::hbShift -1); // HB_SHIFT incorrect do not loose the gained bit
*y = qAcc >> (HBFIRFilterTraits<HBFilterOrder>::hbShift -1);
}
void doInterpolateFIR(Sample* sample)
{
qint32 iAcc = 0;
qint32 qAcc = 0;
qint16 a = m_ptr;
qint16 b = m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder / 2) - 1;
// go through samples in buffer
for (int i = 0; i < HBFIRFilterTraits<HBFilterOrder>::hbOrder / 4; i++)
{
iAcc += (m_samples[a][0] + m_samples[b][0]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
qAcc += (m_samples[a][1] + m_samples[b][1]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
a++;
b--;
}
sample->setReal(iAcc >> (HBFIRFilterTraits<HBFilterOrder>::hbShift -1));
sample->setImag(qAcc >> (HBFIRFilterTraits<HBFilterOrder>::hbShift -1));
}
void doInterpolateFIR(qint32 *x, qint32 *y)
{
qint32 iAcc = 0;
qint32 qAcc = 0;
qint16 a = m_ptr;
qint16 b = m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder / 2) - 1;
// go through samples in buffer
for (int i = 0; i < HBFIRFilterTraits<HBFilterOrder>::hbOrder / 4; i++)
{
iAcc += (m_samples[a][0] + m_samples[b][0]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
qAcc += (m_samples[a][1] + m_samples[b][1]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
a++;
b--;
}
*x = iAcc >> (HBFIRFilterTraits<HBFilterOrder>::hbShift -1);
*y = qAcc >> (HBFIRFilterTraits<HBFilterOrder>::hbShift -1);
}
};
template<uint32_t HBFilterOrder>
IntHalfbandFilterEO1<HBFilterOrder>::IntHalfbandFilterEO1()
{
m_size = HBFIRFilterTraits<HBFilterOrder>::hbOrder/2;
for (int i = 0; i < 2*m_size; i++)
{
m_even[0][i] = 0;
m_even[1][i] = 0;
m_odd[0][i] = 0;
m_odd[1][i] = 0;
m_samples[i][0] = 0;
m_samples[i][1] = 0;
}
m_ptr = 0;
m_state = 0;
}
#endif /* SDRBASE_DSP_INTHALFBANDFILTEREO1_H_ */