1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-15 12:51:49 -05:00
sdrangel/plugins/channelrx/chanalyzer/chanalyzersink.cpp

376 lines
12 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include "chanalyzersink.h"
#include <QTime>
#include <QDebug>
#include <stdio.h>
#include "dsp/scopevis.h"
const unsigned int ChannelAnalyzerSink::m_ssbFftLen = 1024;
const unsigned int ChannelAnalyzerSink::m_corrFFTLen = 4*m_ssbFftLen;
ChannelAnalyzerSink::ChannelAnalyzerSink() :
m_channelSampleRate(48000),
m_channelFrequencyOffset(0),
m_sinkSampleRate(48000),
m_costasLoop(0.002, 2),
m_scopeVis(nullptr)
{
m_usb = true;
m_magsq = 0;
SSBFilter = new fftfilt(m_settings.m_lowCutoff / m_channelSampleRate, m_settings.m_bandwidth / m_channelSampleRate, m_ssbFftLen);
DSBFilter = new fftfilt(m_settings.m_bandwidth / m_channelSampleRate, 2*m_ssbFftLen);
RRCFilter = new fftfilt(m_settings.m_bandwidth / m_channelSampleRate, 2*m_ssbFftLen);
m_corr = new fftcorr(2*m_corrFFTLen); // 8k for 4k effective samples
m_pll.computeCoefficients(m_settings.m_pllBandwidth, m_settings.m_pllDampingFactor, m_settings.m_pllLoopGain);
m_costasLoop.computeCoefficients(m_settings.m_pllBandwidth);
applyChannelSettings(m_channelSampleRate, m_sinkSampleRate, m_channelFrequencyOffset, true);
applySettings(m_settings, true);
}
ChannelAnalyzerSink::~ChannelAnalyzerSink()
{
delete SSBFilter;
delete DSBFilter;
delete RRCFilter;
delete m_corr;
}
void ChannelAnalyzerSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
{
fftfilt::cmplx *sideband = 0;
for (SampleVector::const_iterator it = begin; it < end; ++it)
{
Complex ci;
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if (m_decimator.getDecim() == 1)
{
processOneSample(c, sideband);
}
else
{
if (m_decimator.decimate(c, ci))
{
if (m_settings.m_rationalDownSample)
{
Complex cj;
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, ci, &cj))
{
processOneSample(cj, sideband);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
else
{
processOneSample(ci, sideband);
}
}
}
}
if (m_scopeVis)
{
std::vector<SampleVector::const_iterator> vbegin;
vbegin.push_back(m_sampleBuffer.begin());
m_scopeVis->feed(vbegin, m_sampleBuffer.end() - m_sampleBuffer.begin());
}
m_sampleBuffer.clear();
}
void ChannelAnalyzerSink::processOneSample(Complex& c, fftfilt::cmplx *sideband)
{
int n_out;
if (m_settings.m_ssb)
{
n_out = SSBFilter->runSSB(c, &sideband, m_usb);
}
else
{
if (m_settings.m_rrc) {
n_out = RRCFilter->runFilt(c, &sideband);
} else {
n_out = DSBFilter->runDSB(c, &sideband);
}
}
for (int i = 0; i < n_out; i++)
{
fftfilt::cmplx si = sideband[i];
Real re = si.real() / SDR_RX_SCALEF;
Real im = si.imag() / SDR_RX_SCALEF;
m_magsq = re*re + im*im;
m_channelPowerAvg(m_magsq);
std::complex<float> mix;
if (m_settings.m_pll)
{
// Use -fPLL to mix (exchange PLL real and image in the complex multiplication)
if (m_settings.m_costasLoop)
{
m_costasLoop.feed(re, im);
mix = si * std::conj(m_costasLoop.getComplex());
feedOneSample(mix, m_costasLoop.getComplex());
}
else if (m_settings.m_fll)
{
m_fll.feed(re, im);
mix = si * std::conj(m_fll.getComplex());
feedOneSample(mix, m_fll.getComplex());
}
else
{
m_pll.feed(re, im);
mix = si * std::conj(m_pll.getComplex());
feedOneSample(mix, m_pll.getComplex());
}
}
else
feedOneSample(si, si);
}
}
void ChannelAnalyzerSink::applyChannelSettings(int channelSampleRate, int sinkSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "ChannelAnalyzerSink::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " sinkSampleRate: " << sinkSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset;
bool doApplySampleRate = false;
if ((m_channelFrequencyOffset != channelFrequencyOffset) ||
(m_channelSampleRate != channelSampleRate) || force)
{
m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
}
if ((m_channelSampleRate != channelSampleRate)
|| (m_sinkSampleRate != sinkSampleRate) || force)
{
m_interpolator.create(16, sinkSampleRate, sinkSampleRate / 4.0f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) sinkSampleRate / (Real) m_settings.m_rationalDownSamplerRate;
int decim = channelSampleRate / sinkSampleRate;
m_decimator.setLog2Decim(0);
for (int i = 0; i < 7; i++) // find log2 between 0 and 6
{
if ((decim & 1) == 1)
{
qDebug() << "ChannelAnalyzerSink::applyChannelSettings: log2decim: " << i;
m_decimator.setLog2Decim(i);
break;
}
decim >>= 1;
}
doApplySampleRate = true;
}
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
m_sinkSampleRate = sinkSampleRate;
if (doApplySampleRate) {
applySampleRate();
}
}
void ChannelAnalyzerSink::setFilters(int sampleRate, float bandwidth, float lowCutoff)
{
qDebug("ChannelAnalyzerSink::setFilters: sampleRate: %d bandwidth: %f lowCutoff: %f",
sampleRate, bandwidth, lowCutoff);
if (bandwidth < 0)
{
bandwidth = -bandwidth;
lowCutoff = -lowCutoff;
m_usb = false;
}
else
{
m_usb = true;
}
if (bandwidth < 100.0f)
{
bandwidth = 100.0f;
lowCutoff = 0;
}
SSBFilter->create_filter(lowCutoff / sampleRate, bandwidth / sampleRate);
DSBFilter->create_dsb_filter(bandwidth / sampleRate);
RRCFilter->create_rrc_filter(bandwidth / sampleRate, m_settings.m_rrcRolloff / 100.0);
}
void ChannelAnalyzerSink::applySettings(const ChannelAnalyzerSettings& settings, bool force)
{
qDebug() << "ChannelAnalyzerSink::applySettings:"
<< " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
<< " m_rcc: " << settings.m_rrc
<< " m_rrcRolloff: " << settings.m_rrcRolloff / 100.0
<< " m_bandwidth: " << settings.m_bandwidth
<< " m_lowCutoff: " << settings.m_lowCutoff
<< " m_log2Decim: " << settings.m_log2Decim
<< " m_rationalDownSample: " << settings.m_rationalDownSample
<< " m_rationalDownSamplerRate: " << settings.m_rationalDownSamplerRate
<< " m_ssb: " << settings.m_ssb
<< " m_pll: " << settings.m_pll
<< " m_fll: " << settings.m_fll
<< " m_costasLoop: " << settings.m_costasLoop
<< " m_pllPskOrder: " << settings.m_pllPskOrder
<< " m_pllBandwidth: " << settings.m_pllBandwidth
<< " m_pllDampingFactor: " << settings.m_pllDampingFactor
<< " m_pllLoopGain: " << settings.m_pllLoopGain
<< " m_inputType: " << (int) settings.m_inputType;
bool doApplySampleRate = false;
if ((settings.m_bandwidth != m_settings.m_bandwidth) ||
(settings.m_lowCutoff != m_settings.m_lowCutoff) ||
(settings.m_rrcRolloff != m_settings.m_rrcRolloff) || force)
{
doApplySampleRate = true;
}
if (settings.m_pll != m_settings.m_pll || force)
{
if (settings.m_pll)
{
m_pll.reset();
m_fll.reset();
m_costasLoop.reset();
}
}
if (settings.m_fll != m_settings.m_fll || force)
{
if (settings.m_fll) {
m_fll.reset();
}
}
if (settings.m_costasLoop != m_settings.m_costasLoop || force)
{
if (settings.m_costasLoop) {
m_costasLoop.reset();
}
}
if (settings.m_pllPskOrder != m_settings.m_pllPskOrder || force)
{
if (settings.m_pllPskOrder < 32) {
m_pll.setPskOrder(settings.m_pllPskOrder);
}
if (settings.m_pllPskOrder < 16) {
m_costasLoop.setPskOrder(settings.m_pllPskOrder);
}
}
if ((settings.m_pllBandwidth != m_settings.m_pllBandwidth)
|| (settings.m_pllDampingFactor != m_settings.m_pllDampingFactor)
|| (settings.m_pllLoopGain != m_settings.m_pllLoopGain)
|| force)
{
m_pll.computeCoefficients(settings.m_pllBandwidth, settings.m_pllDampingFactor, settings.m_pllLoopGain);
m_costasLoop.computeCoefficients(settings.m_pllBandwidth);
}
if ((settings.m_rationalDownSample != m_settings.m_rationalDownSample) ||
(settings.m_rationalDownSamplerRate != m_settings.m_rationalDownSamplerRate) || force)
{
m_interpolator.create(16, m_sinkSampleRate, m_sinkSampleRate / 4.0f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_sinkSampleRate / (Real) settings.m_rationalDownSamplerRate;
doApplySampleRate = true;
}
m_settings = settings;
if (doApplySampleRate) {
applySampleRate();
}
}
bool ChannelAnalyzerSink::isPllLocked() const
{
if (m_settings.m_pll)
return m_pll.locked();
else
return false;
}
Real ChannelAnalyzerSink::getPllFrequency() const
{
if (m_settings.m_costasLoop)
return m_costasLoop.getFreq();
else if (m_settings.m_fll)
return m_fll.getFreq();
else if (m_settings.m_pll)
return m_pll.getFreq();
else
return 0.0;
}
Real ChannelAnalyzerSink::getPllPhase() const
{
if (m_settings.m_costasLoop)
return m_costasLoop.getPhiHat();
else if (m_settings.m_pll)
return m_pll.getPhiHat();
else
return 0.0f;
}
Real ChannelAnalyzerSink::getPllDeltaPhase() const
{
if (m_settings.m_pll)
return m_pll.getDeltaPhi();
else
return 0.0f;
}
int ChannelAnalyzerSink::getActualSampleRate()
{
if (m_settings.m_rationalDownSample) {
return m_settings.m_rationalDownSamplerRate;
} else {
return m_sinkSampleRate;
}
}
void ChannelAnalyzerSink::applySampleRate()
{
int sampleRate = getActualSampleRate();
qDebug("ChannelAnalyzerSink::applySampleRate: sampleRate: %d m_interpolatorDistance: %f", sampleRate, m_interpolatorDistance);
setFilters(sampleRate, m_settings.m_bandwidth, m_settings.m_lowCutoff);
m_pll.setSampleRate(sampleRate);
m_fll.setSampleRate(sampleRate);
m_costasLoop.setSampleRate(sampleRate);
RRCFilter->create_rrc_filter(m_settings.m_bandwidth / (float) sampleRate, m_settings.m_rrcRolloff / 100.0);
}