1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-22 08:04:49 -05:00
sdrangel/sdrbase/dsp/dspdevicemimoengine.cpp
srcejon 78d0160514 MainWindow: Add FSMs to avoid blocking on the GUI thread.
DSPDevice*Engine: Add signals to indicate when commands have been processed.
DSPDeviceSourceEngine: Fix small memory leak.
DSPEngine::removeDeviceEngineAt: Remove wait to avoid blocking thread. Return QThread to get finished signal.
DSPEngine::addDevice*Engine: Don't call deleteLater for device*Engine, as these objects are deleted manually in MainWindow, which will crash if deleteLater called first.
2024-10-10 13:57:11 +01:00

1349 lines
48 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019-2023 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// Copyright (C) 2022 Jon Beniston, M7RCE <jon@beniston.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QDebug>
#include "dspcommands.h"
#include "basebandsamplesink.h"
#include "basebandsamplesource.h"
#include "devicesamplemimo.h"
#include "mimochannel.h"
#include "dspdevicemimoengine.h"
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::SetSampleMIMO, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::AddBasebandSampleSource, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::RemoveBasebandSampleSource, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::AddMIMOChannel, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::RemoveMIMOChannel, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::AddBasebandSampleSink, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::RemoveBasebandSampleSink, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::AddSpectrumSink, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::RemoveSpectrumSink, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::GetErrorMessage, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::GetMIMODeviceDescription, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::ConfigureCorrection, Message)
MESSAGE_CLASS_DEFINITION(DSPDeviceMIMOEngine::SetSpectrumSinkInput, Message)
DSPDeviceMIMOEngine::DSPDeviceMIMOEngine(uint32_t uid, QObject* parent) :
QObject(parent),
m_uid(uid),
m_stateRx(State::StNotStarted),
m_stateTx(State::StNotStarted),
m_deviceSampleMIMO(nullptr),
m_spectrumInputSourceElseSink(true),
m_spectrumInputIndex(0)
{
setStateRx(State::StIdle);
setStateTx(State::StIdle);
connect(&m_inputMessageQueue, SIGNAL(messageEnqueued()), this, SLOT(handleInputMessages()), Qt::QueuedConnection);
}
DSPDeviceMIMOEngine::~DSPDeviceMIMOEngine()
{
qDebug("DSPDeviceMIMOEngine::~DSPDeviceMIMOEngine");
}
void DSPDeviceMIMOEngine::setStateRx(State state)
{
if (m_stateRx != state)
{
m_stateRx = state;
emit stateChanged();
}
}
void DSPDeviceMIMOEngine::setStateTx(State state)
{
if (m_stateTx != state)
{
m_stateTx = state;
emit stateChanged();
}
}
bool DSPDeviceMIMOEngine::initProcess(int subsystemIndex)
{
qDebug() << "DSPDeviceMIMOEngine::initProcess: subsystemIndex: " << subsystemIndex;
if (subsystemIndex == 0) // Rx side
{
auto *cmd = new DSPAcquisitionInit();
getInputMessageQueue()->push(cmd);
return true;
}
else if (subsystemIndex == 1) // Tx side
{
auto *cmd = new DSPGenerationInit();
getInputMessageQueue()->push(cmd);
return true;
}
return false;
}
bool DSPDeviceMIMOEngine::startProcess(int subsystemIndex)
{
qDebug() << "DSPDeviceMIMOEngine::startProcess: subsystemIndex: " << subsystemIndex;
if (subsystemIndex == 0) // Rx side
{
auto *cmd = new DSPAcquisitionStart();
getInputMessageQueue()->push(cmd);
return true;
}
else if (subsystemIndex == 1) // Tx side
{
auto *cmd = new DSPGenerationStart();
getInputMessageQueue()->push(cmd);
return true;
}
return false;
}
void DSPDeviceMIMOEngine::stopProcess(int subsystemIndex)
{
qDebug() << "DSPDeviceMIMOEngine::stopProcess: subsystemIndex: " << subsystemIndex;
if (subsystemIndex == 0) // Rx side
{
auto *cmd = new DSPAcquisitionStop();
getInputMessageQueue()->push(cmd);
}
else if (subsystemIndex == 1) // Tx side
{
auto *cmd = new DSPGenerationStop();
getInputMessageQueue()->push(cmd);
}
}
void DSPDeviceMIMOEngine::setMIMO(DeviceSampleMIMO* mimo)
{
qDebug() << "DSPDeviceMIMOEngine::setMIMO";
auto *cmd = new SetSampleMIMO(mimo);
getInputMessageQueue()->push(cmd);
}
void DSPDeviceMIMOEngine::setMIMOSequence(int sequence)
{
qDebug("DSPDeviceMIMOEngine::setSinkSequence: seq: %d", sequence);
m_sampleMIMOSequence = sequence;
}
void DSPDeviceMIMOEngine::addChannelSource(BasebandSampleSource* source, int index)
{
qDebug() << "DSPDeviceMIMOEngine::addChannelSource: "
<< source->getSourceName().toStdString().c_str()
<< " at: "
<< index;
auto *cmd = new AddBasebandSampleSource(source, index);
getInputMessageQueue()->push(cmd);
}
void DSPDeviceMIMOEngine::removeChannelSource(BasebandSampleSource* source, int index)
{
qDebug() << "DSPDeviceMIMOEngine::removeChannelSource: "
<< source->getSourceName().toStdString().c_str()
<< " at: "
<< index;
auto *cmd = new RemoveBasebandSampleSource(source, index);
getInputMessageQueue()->push(cmd);
}
void DSPDeviceMIMOEngine::addChannelSink(BasebandSampleSink* sink, int index)
{
qDebug() << "DSPDeviceMIMOEngine::addChannelSink: "
<< sink->getSinkName().toStdString().c_str()
<< " at: "
<< index;
auto *cmd = new AddBasebandSampleSink(sink, index);
getInputMessageQueue()->push(cmd);
}
void DSPDeviceMIMOEngine::removeChannelSink(BasebandSampleSink* sink, int index)
{
qDebug() << "DSPDeviceMIMOEngine::removeChannelSink: "
<< sink->getSinkName().toStdString().c_str()
<< " at: "
<< index;
auto *cmd = new RemoveBasebandSampleSink(sink, index);
getInputMessageQueue()->push(cmd);
}
void DSPDeviceMIMOEngine::addMIMOChannel(MIMOChannel *channel)
{
qDebug() << "DSPDeviceMIMOEngine::addMIMOChannel: "
<< channel->getMIMOName().toStdString().c_str();
auto *cmd = new AddMIMOChannel(channel);
getInputMessageQueue()->push(cmd);
}
void DSPDeviceMIMOEngine::removeMIMOChannel(MIMOChannel *channel)
{
qDebug() << "DSPDeviceMIMOEngine::removeMIMOChannel: "
<< channel->getMIMOName().toStdString().c_str();
auto *cmd = new RemoveMIMOChannel(channel);
getInputMessageQueue()->push(cmd);
}
void DSPDeviceMIMOEngine::addSpectrumSink(BasebandSampleSink* spectrumSink)
{
qDebug() << "DSPDeviceMIMOEngine::addSpectrumSink: " << spectrumSink->getSinkName().toStdString().c_str();
auto *cmd = new AddSpectrumSink(spectrumSink);
getInputMessageQueue()->push(cmd);
}
void DSPDeviceMIMOEngine::removeSpectrumSink(BasebandSampleSink* spectrumSink)
{
qDebug() << "DSPDeviceSinkEngine::removeSpectrumSink: " << spectrumSink->getSinkName().toStdString().c_str();
auto *cmd = new RemoveSpectrumSink(spectrumSink);
getInputMessageQueue()->push(cmd);
}
void DSPDeviceMIMOEngine::setSpectrumSinkInput(bool sourceElseSink, int index)
{
qDebug() << "DSPDeviceSinkEngine::setSpectrumSinkInput: "
<< " sourceElseSink: " << sourceElseSink
<< " index: " << index;
auto *cmd = new SetSpectrumSinkInput(sourceElseSink, index);
getInputMessageQueue()->push(cmd);
}
QString DSPDeviceMIMOEngine::errorMessage(int subsystemIndex) const
{
qDebug() << "DSPDeviceMIMOEngine::errorMessage: subsystemIndex:" << subsystemIndex;
if (subsystemIndex == 0) {
return m_errorMessageRx;
} else if (subsystemIndex == 1) {
return m_errorMessageTx;
} else {
return "Not implemented";
}
}
QString DSPDeviceMIMOEngine::deviceDescription() const
{
qDebug() << "DSPDeviceMIMOEngine::deviceDescription";
return m_deviceDescription;
}
void DSPDeviceMIMOEngine::workSampleSinkFifos()
{
SampleMIFifo* sampleFifo = m_deviceSampleMIMO->getSampleMIFifo();
if (!sampleFifo) {
return;
}
unsigned int iPart1Begin;
unsigned int iPart1End;
unsigned int iPart2Begin;
unsigned int iPart2End;
const std::vector<SampleVector>& data = sampleFifo->getData();
while ((sampleFifo->fillSync() > 0) && (m_inputMessageQueue.size() == 0))
{
sampleFifo->readSync(iPart1Begin, iPart1End, iPart2Begin, iPart2End);
if (iPart1Begin != iPart1End)
{
for (unsigned int stream = 0; stream < data.size(); stream++) {
workSamplesSink(data[stream].begin() + iPart1Begin, data[stream].begin() + iPart1End, stream);
}
}
if (iPart2Begin != iPart2End)
{
for (unsigned int stream = 0; stream < data.size(); stream++) {
workSamplesSink(data[stream].begin() + iPart2Begin, data[stream].begin() + iPart2End, stream);
}
}
}
}
void DSPDeviceMIMOEngine::workSampleSourceFifos()
{
SampleMOFifo* sampleFifo = m_deviceSampleMIMO->getSampleMOFifo();
if (!sampleFifo) {
return;
}
std::vector<SampleVector::iterator> vbegin;
std::vector<SampleVector>& data = sampleFifo->getData();
unsigned int iPart1Begin;
unsigned int iPart1End;
unsigned int iPart2Begin;
unsigned int iPart2End;
unsigned int remainder = sampleFifo->remainderSync();
while ((remainder > 0) && (m_inputMessageQueue.size() == 0))
{
sampleFifo->writeSync(remainder, iPart1Begin, iPart1End, iPart2Begin, iPart2End);
// pull samples from the sources by stream
if (iPart1Begin != iPart1End)
{
for (unsigned int streamIndex = 0; streamIndex < sampleFifo->getNbStreams(); streamIndex++) {
workSamplesSource(data[streamIndex], iPart1Begin, iPart1End, streamIndex);
}
}
if (iPart2Begin != iPart2End)
{
for (unsigned int streamIndex = 0; streamIndex < sampleFifo->getNbStreams(); streamIndex++) {
workSamplesSource(data[streamIndex], iPart2Begin, iPart2End, streamIndex);
}
}
// get new remainder
remainder = sampleFifo->remainderSync();
}
}
void DSPDeviceMIMOEngine::workSampleSinkFifo(unsigned int streamIndex)
{
SampleMIFifo* sampleFifo = m_deviceSampleMIMO->getSampleMIFifo();
if (!sampleFifo) {
return;
}
SampleVector::const_iterator part1begin;
SampleVector::const_iterator part1end;
SampleVector::const_iterator part2begin;
SampleVector::const_iterator part2end;
while ((sampleFifo->fillAsync(streamIndex) > 0) && (m_inputMessageQueue.size() == 0))
{
sampleFifo->readAsync(&part1begin, &part1end, &part2begin, &part2end, streamIndex);
if (part1begin != part1end) { // first part of FIFO data
workSamplesSink(part1begin, part1end, streamIndex);
}
if (part2begin != part2end) { // second part of FIFO data (used when block wraps around)
workSamplesSink(part2begin, part2end, streamIndex);
}
}
}
void DSPDeviceMIMOEngine::workSampleSourceFifo(unsigned int streamIndex)
{
SampleMOFifo* sampleFifo = m_deviceSampleMIMO->getSampleMOFifo();
if (!sampleFifo) {
return;
}
SampleVector& data = sampleFifo->getData(streamIndex);
unsigned int iPart1Begin;
unsigned int iPart1End;
unsigned int iPart2Begin;
unsigned int iPart2End;
unsigned int amount = sampleFifo->remainderAsync(streamIndex);
while ((amount > 0) && (m_inputMessageQueue.size() == 0))
{
sampleFifo->writeAsync(amount, iPart1Begin, iPart1End, iPart2Begin, iPart2End, streamIndex);
// part1
if (iPart1Begin != iPart1End) {
workSamplesSource(data, iPart1Begin, iPart1End, streamIndex);
}
// part2
if (iPart2Begin != iPart2End) {
workSamplesSource(data, iPart2Begin, iPart2End, streamIndex);
}
// get new amount
amount = sampleFifo->remainderAsync(streamIndex);
}
}
/**
* Routes samples from device source FIFO to sink channels that are registered for the FIFO
* Routes samples from source channels registered for the FIFO to the device sink FIFO
*/
void DSPDeviceMIMOEngine::workSamplesSink(const SampleVector::const_iterator& vbegin, const SampleVector::const_iterator& vend, unsigned int streamIndex)
{
std::map<int, bool>::const_iterator rcIt = m_rxRealElseComplex.find(streamIndex);
bool positiveOnly = (rcIt == m_rxRealElseComplex.end() ? false : rcIt->second);
// feed data to direct sinks
if (streamIndex < m_basebandSampleSinks.size())
{
for (BasebandSampleSinks::const_iterator it = m_basebandSampleSinks[streamIndex].begin(); it != m_basebandSampleSinks[streamIndex].end(); ++it) {
(*it)->feed(vbegin, vend, positiveOnly);
}
}
// possibly feed data to spectrum sink
if (m_spectrumSink && m_spectrumInputSourceElseSink && (streamIndex == m_spectrumInputIndex)) {
m_spectrumSink->feed(vbegin, vend, positiveOnly);
}
// feed data to MIMO channels
for (MIMOChannels::const_iterator it = m_mimoChannels.begin(); it != m_mimoChannels.end(); ++it) {
(*it)->feed(vbegin, vend, streamIndex);
}
}
void DSPDeviceMIMOEngine::workSamplesSource(SampleVector& data, unsigned int iBegin, unsigned int iEnd, unsigned int streamIndex)
{
unsigned int nbSamples = iEnd - iBegin;
SampleVector::iterator begin = data.begin() + iBegin;
// pull data from MIMO channels
for (MIMOChannels::const_iterator it = m_mimoChannels.begin(); it != m_mimoChannels.end(); ++it) {
(*it)->pull(begin, nbSamples, streamIndex);
}
if (m_mimoChannels.size() == 0) // Process single stream channels only if there are no MIMO channels
{
if (m_basebandSampleSources[streamIndex].size() == 0)
{
m_sourceZeroBuffers[streamIndex].allocate(nbSamples, Sample{0,0});
std::copy(
m_sourceZeroBuffers[streamIndex].m_vector.begin(),
m_sourceZeroBuffers[streamIndex].m_vector.begin() + nbSamples,
begin
);
}
else if (m_basebandSampleSources[streamIndex].size() == 1)
{
BasebandSampleSource *sampleSource = m_basebandSampleSources[streamIndex].front();
sampleSource->pull(begin, nbSamples);
}
else
{
m_sourceSampleBuffers[streamIndex].allocate(nbSamples);
BasebandSampleSources::const_iterator srcIt = m_basebandSampleSources[streamIndex].begin();
BasebandSampleSource *sampleSource = *srcIt;
sampleSource->pull(begin, nbSamples);
++srcIt;
m_sumIndex = 1;
for (; srcIt != m_basebandSampleSources[streamIndex].end(); ++srcIt, m_sumIndex++)
{
sampleSource = *srcIt;
auto aBegin = m_sourceSampleBuffers[streamIndex].m_vector.begin();
sampleSource->pull(aBegin, nbSamples);
std::transform(
aBegin,
aBegin + nbSamples,
begin,
begin,
[this](Sample const& a, const Sample& b) -> Sample {
FixReal den = m_sumIndex + 1; // at each stage scale sum by n/n+1 and input by 1/n+1
FixReal nom = m_sumIndex; // so that final sum is scaled by N (number of channels)
FixReal x = a.real()/den + nom*(b.real()/den);
FixReal y = a.imag()/den + nom*(b.imag()/den);
return Sample{x, y};
}
);
}
}
}
// possibly feed data to spectrum sink
std::map<int, bool>::const_iterator rcIt = m_txRealElseComplex.find(streamIndex);
bool positiveOnly = (rcIt == m_txRealElseComplex.end() ? false : rcIt->second);
if (m_spectrumSink && (!m_spectrumInputSourceElseSink) && (streamIndex == m_spectrumInputIndex)) {
m_spectrumSink->feed(begin, begin + nbSamples, positiveOnly);
}
}
// notStarted -> idle -> init -> running -+
// ^ |
// +-----------------------+
DSPDeviceMIMOEngine::State DSPDeviceMIMOEngine::gotoIdle(int subsystemIndex)
{
qDebug() << "DSPDeviceMIMOEngine::gotoIdle: subsystemIndex:" << subsystemIndex;
if (!m_deviceSampleMIMO) {
return State::StIdle;
}
if (subsystemIndex == 0) // Rx
{
switch (m_stateRx) {
case State::StNotStarted:
return State::StNotStarted;
case State::StIdle:
case State::StError:
return State::StIdle;
case State::StReady:
case State::StRunning:
break;
}
m_deviceSampleMIMO->stopRx(); // stop everything
std::vector<BasebandSampleSinks>::const_iterator vbit = m_basebandSampleSinks.begin();
for (; vbit != m_basebandSampleSinks.end(); ++vbit)
{
for (auto it = vbit->begin(); it != vbit->end(); ++it)
{
qDebug() << "DSPDeviceMIMOEngine::gotoIdle: stopping BasebandSampleSink: " << (*it)->getSinkName().toStdString().c_str();
(*it)->stop();
}
}
for (MIMOChannels::const_iterator it = m_mimoChannels.begin(); it != m_mimoChannels.end(); ++it)
{
qDebug() << "DSPDeviceMIMOEngine::gotoIdle: stopping MIMOChannel sinks: " << (*it)->getMIMOName().toStdString().c_str();
(*it)->stopSinks();
}
}
else if (subsystemIndex == 1) // Tx
{
switch (m_stateTx) {
case State::StNotStarted:
return State::StNotStarted;
case State::StIdle:
case State::StError:
return State::StIdle;
case State::StReady:
case State::StRunning:
break;
}
m_deviceSampleMIMO->stopTx(); // stop everything
std::vector<BasebandSampleSources>::const_iterator vSourceIt = m_basebandSampleSources.begin();
for (; vSourceIt != m_basebandSampleSources.end(); vSourceIt++)
{
for (auto it = vSourceIt->begin(); it != vSourceIt->end(); ++it)
{
qDebug() << "DSPDeviceMIMOEngine::gotoIdle: stopping BasebandSampleSource(" << (*it)->getSourceName().toStdString().c_str() << ")";
(*it)->stop();
}
}
for (MIMOChannels::const_iterator it = m_mimoChannels.begin(); it != m_mimoChannels.end(); ++it)
{
qDebug() << "DSPDeviceMIMOEngine::gotoIdle: stopping MIMOChannel sources: " << (*it)->getMIMOName().toStdString().c_str();
(*it)->stopSources();
}
}
else
{
return State::StIdle;
}
m_deviceDescription.clear();
return State::StIdle;
}
DSPDeviceMIMOEngine::State DSPDeviceMIMOEngine::gotoInit(int subsystemIndex)
{
if (!m_deviceSampleMIMO) {
return gotoError(subsystemIndex, "No sample MIMO configured");
}
m_deviceDescription = m_deviceSampleMIMO->getDeviceDescription();
qDebug() << "DSPDeviceMIMOEngine::gotoInit:"
<< "subsystemIndex: " << subsystemIndex
<< "m_deviceDescription: " << m_deviceDescription.toStdString().c_str();
if (subsystemIndex == 0) // Rx
{
switch(m_stateRx) {
case State::StNotStarted:
return State::StNotStarted;
case State::StRunning:
return State::StRunning;
case State::StReady:
return State::StReady;
case State::StIdle:
case State::StError:
break;
}
// init: pass sample rate and center frequency to all sample rate and/or center frequency dependent sinks and wait for completion
for (unsigned int isource = 0; isource < m_deviceSampleMIMO->getNbSourceStreams(); isource++)
{
if (isource < m_sourcesCorrections.size())
{
m_sourcesCorrections[isource].m_iOffset = 0;
m_sourcesCorrections[isource].m_qOffset = 0;
m_sourcesCorrections[isource].m_iRange = 1 << 16;
m_sourcesCorrections[isource].m_qRange = 1 << 16;
}
quint64 sourceCenterFrequency = m_deviceSampleMIMO->getSourceCenterFrequency(isource);
int sourceStreamSampleRate = m_deviceSampleMIMO->getSourceSampleRate(isource);
qDebug("DSPDeviceMIMOEngine::gotoInit: m_sourceCenterFrequencies[%d] = %llu", isource, sourceCenterFrequency);
qDebug("DSPDeviceMIMOEngine::gotoInit: m_sourceStreamSampleRates[%d] = %d", isource, sourceStreamSampleRate);
DSPSignalNotification notif(sourceStreamSampleRate, sourceCenterFrequency);
if (isource < m_basebandSampleSinks.size())
{
for (BasebandSampleSinks::const_iterator it = m_basebandSampleSinks[isource].begin(); it != m_basebandSampleSinks[isource].end(); ++it)
{
qDebug() << "DSPDeviceMIMOEngine::gotoInit: initializing " << (*it)->getSinkName().toStdString().c_str();
(*it)->pushMessage(new DSPSignalNotification(notif));
}
}
}
}
else if (subsystemIndex == 1) // Tx
{
switch(m_stateTx) {
case State::StNotStarted:
return State::StNotStarted;
case State::StRunning:
return State::StRunning;
case State::StReady:
return State::StReady;
case State::StIdle:
case State::StError:
break;
}
for (unsigned int isink = 0; isink < m_deviceSampleMIMO->getNbSinkStreams(); isink++)
{
quint64 sinkCenterFrequency = m_deviceSampleMIMO->getSinkCenterFrequency(isink);
int sinkStreamSampleRate = m_deviceSampleMIMO->getSinkSampleRate(isink);
qDebug("DSPDeviceMIMOEngine::gotoInit: m_sinkCenterFrequencies[%d] = %llu", isink, sinkCenterFrequency);
qDebug("DSPDeviceMIMOEngine::gotoInit: m_sinkStreamSampleRates[%d] = %d", isink, sinkStreamSampleRate);
DSPSignalNotification notif(sinkStreamSampleRate, sinkCenterFrequency);
if (isink < m_basebandSampleSources.size())
{
for (BasebandSampleSources::const_iterator it = m_basebandSampleSources[isink].begin(); it != m_basebandSampleSources[isink].end(); ++it)
{
qDebug() << "DSPDeviceMIMOEngine::gotoInit: initializing BasebandSampleSource(" << (*it)->getSourceName().toStdString().c_str() << ")";
(*it)->pushMessage(new DSPSignalNotification(notif));
}
}
}
}
return State::StReady;
}
DSPDeviceMIMOEngine::State DSPDeviceMIMOEngine::gotoRunning(int subsystemIndex)
{
qDebug() << "DSPDeviceMIMOEngine::gotoRunning: subsystemIndex:" << subsystemIndex;
if (!m_deviceSampleMIMO) {
return gotoError(subsystemIndex, "DSPDeviceMIMOEngine::gotoRunning: No sample source configured");
}
qDebug() << "DSPDeviceMIMOEngine::gotoRunning:" << m_deviceDescription.toStdString().c_str() << "started";
if (subsystemIndex == 0) // Rx
{
switch (m_stateRx)
{
case State::StNotStarted:
return State::StNotStarted;
case State::StIdle:
return State::StIdle;
case State::StRunning:
return State::StRunning;
case State::StReady:
case State::StError:
break;
}
if (!m_deviceSampleMIMO->startRx()) { // Start everything
return gotoError(0, "Could not start sample source");
}
std::vector<BasebandSampleSinks>::const_iterator vbit = m_basebandSampleSinks.begin();
for (; vbit != m_basebandSampleSinks.end(); ++vbit)
{
for (auto it = vbit->begin(); it != vbit->end(); ++it)
{
qDebug() << "DSPDeviceMIMOEngine::gotoRunning: starting BasebandSampleSink: " << (*it)->getSinkName().toStdString().c_str();
(*it)->start();
}
}
for (MIMOChannels::const_iterator it = m_mimoChannels.begin(); it != m_mimoChannels.end(); ++it)
{
qDebug() << "DSPDeviceMIMOEngine::gotoRunning: starting MIMOChannel sinks: " << (*it)->getMIMOName().toStdString().c_str();
(*it)->startSinks();
}
}
else if (subsystemIndex == 1) // Tx
{
switch (m_stateTx)
{
case State::StNotStarted:
return State::StNotStarted;
case State::StIdle:
return State::StIdle;
case State::StRunning:
return State::StRunning;
case State::StReady:
case State::StError:
break;
}
if (!m_deviceSampleMIMO->startTx()) { // Start everything
return gotoError(1, "Could not start sample sink");
}
std::vector<BasebandSampleSources>::const_iterator vSourceIt = m_basebandSampleSources.begin();
for (; vSourceIt != m_basebandSampleSources.end(); vSourceIt++)
{
for (auto it = vSourceIt->begin(); it != vSourceIt->end(); ++it)
{
qDebug() << "DSPDeviceMIMOEngine::gotoRunning: starting BasebandSampleSource(" << (*it)->getSourceName().toStdString().c_str() << ")";
(*it)->start();
}
}
for (MIMOChannels::const_iterator it = m_mimoChannels.begin(); it != m_mimoChannels.end(); ++it)
{
qDebug() << "DSPDeviceMIMOEngine::gotoRunning: starting MIMOChannel sources: " << (*it)->getMIMOName().toStdString().c_str();
(*it)->startSources();
}
}
qDebug() << "DSPDeviceMIMOEngine::gotoRunning:input message queue pending: " << m_inputMessageQueue.size();
return State::StRunning;
}
DSPDeviceMIMOEngine::State DSPDeviceMIMOEngine::gotoError(int subsystemIndex, const QString& errorMessage)
{
qDebug() << "DSPDeviceMIMOEngine::gotoError: "
<< " subsystemIndex: " << subsystemIndex
<< " errorMessage: " << errorMessage;
if (subsystemIndex == 0)
{
m_errorMessageRx = errorMessage;
setStateRx(State::StError);
}
else if (subsystemIndex == 1)
{
m_errorMessageTx = errorMessage;
setStateTx(State::StError);
}
return State::StError;
}
void DSPDeviceMIMOEngine::handleDataRxSync()
{
if (m_stateRx == State::StRunning) {
workSampleSinkFifos();
}
}
void DSPDeviceMIMOEngine::handleDataRxAsync(int streamIndex)
{
if (m_stateRx == State::StRunning) {
workSampleSinkFifo(streamIndex);
}
}
void DSPDeviceMIMOEngine::handleDataTxSync()
{
if (m_stateTx == State::StRunning) {
workSampleSourceFifos();
}
}
void DSPDeviceMIMOEngine::handleDataTxAsync(int streamIndex)
{
if (m_stateTx == State::StRunning) {
workSampleSourceFifo(streamIndex);
}
}
void DSPDeviceMIMOEngine::handleSetMIMO(DeviceSampleMIMO* mimo)
{
m_deviceSampleMIMO = mimo;
if (!mimo) { // Early leave
return;
}
for (unsigned int i = 0; i < m_deviceSampleMIMO->getNbSinkFifos(); i++)
{
m_basebandSampleSinks.emplace_back();
m_sourcesCorrections.emplace_back();
}
for (unsigned int i = 0; i < m_deviceSampleMIMO->getNbSourceFifos(); i++)
{
m_basebandSampleSources.emplace_back();
m_sourceSampleBuffers.emplace_back();
m_sourceZeroBuffers.emplace_back();
}
if (m_deviceSampleMIMO->getMIMOType() == DeviceSampleMIMO::MIMOHalfSynchronous) // synchronous FIFOs on Rx and not with Tx
{
qDebug("DSPDeviceMIMOEngine::handleSetMIMO: synchronous sources set %s", qPrintable(mimo->getDeviceDescription()));
QObject::connect(
m_deviceSampleMIMO->getSampleMIFifo(),
&SampleMIFifo::dataSyncReady,
this,
&DSPDeviceMIMOEngine::handleDataRxSync,
Qt::QueuedConnection
);
QObject::connect(
m_deviceSampleMIMO->getSampleMOFifo(),
&SampleMOFifo::dataReadSync,
this,
&DSPDeviceMIMOEngine::handleDataTxSync,
Qt::QueuedConnection
);
}
else if (m_deviceSampleMIMO->getMIMOType() == DeviceSampleMIMO::MIMOAsynchronous) // asynchronous FIFOs
{
for (unsigned int stream = 0; stream < m_deviceSampleMIMO->getNbSourceStreams(); stream++)
{
qDebug("DSPDeviceMIMOEngine::handleSetMIMO: asynchronous sources set %s channel %u",
qPrintable(mimo->getDeviceDescription()), stream);
QObject::connect(
m_deviceSampleMIMO->getSampleMIFifo(),
&SampleMIFifo::dataAsyncReady,
this,
&DSPDeviceMIMOEngine::handleDataRxAsync,
Qt::QueuedConnection
);
QObject::connect(
m_deviceSampleMIMO->getSampleMOFifo(),
&SampleMOFifo::dataReadAsync,
this,
&DSPDeviceMIMOEngine::handleDataTxAsync,
Qt::QueuedConnection
);
}
}
}
bool DSPDeviceMIMOEngine::handleMessage(const Message& message)
{
if (ConfigureCorrection::match(message))
{
const auto& conf = (const ConfigureCorrection&) message;
unsigned int isource = conf.getIndex();
if (isource < m_sourcesCorrections.size())
{
m_sourcesCorrections[isource].m_iqImbalanceCorrection = conf.getIQImbalanceCorrection();
if (m_sourcesCorrections[isource].m_dcOffsetCorrection != conf.getDCOffsetCorrection())
{
m_sourcesCorrections[isource].m_dcOffsetCorrection = conf.getDCOffsetCorrection();
m_sourcesCorrections[isource].m_iOffset = 0;
m_sourcesCorrections[isource].m_qOffset = 0;
if (m_sourcesCorrections[isource].m_iqImbalanceCorrection != conf.getIQImbalanceCorrection())
{
m_sourcesCorrections[isource].m_iqImbalanceCorrection = conf.getIQImbalanceCorrection();
m_sourcesCorrections[isource].m_iRange = 1 << 16;
m_sourcesCorrections[isource].m_qRange = 1 << 16;
m_sourcesCorrections[isource].m_imbalance = 65536;
}
}
m_sourcesCorrections[isource].m_iBeta.reset();
m_sourcesCorrections[isource].m_qBeta.reset();
m_sourcesCorrections[isource].m_avgAmp.reset();
m_sourcesCorrections[isource].m_avgII.reset();
m_sourcesCorrections[isource].m_avgII2.reset();
m_sourcesCorrections[isource].m_avgIQ.reset();
m_sourcesCorrections[isource].m_avgPhi.reset();
m_sourcesCorrections[isource].m_avgQQ2.reset();
m_sourcesCorrections[isource].m_iBeta.reset();
m_sourcesCorrections[isource].m_qBeta.reset();
}
return true;
}
else if (DSPMIMOSignalNotification::match(message))
{
const auto& notif = (const DSPMIMOSignalNotification&) message;
// update DSP values
bool sourceElseSink = notif.getSourceOrSink();
unsigned int istream = notif.getIndex();
int sampleRate = notif.getSampleRate();
qint64 centerFrequency = notif.getCenterFrequency();
bool realElseComplex = notif.getRealElseComplex();
qDebug() << "DeviceMIMOEngine::handleInputMessages: DSPMIMOSignalNotification:"
<< " sourceElseSink: " << sourceElseSink
<< " istream: " << istream
<< " sampleRate: " << sampleRate
<< " centerFrequency: " << centerFrequency
<< " realElseComplex" << realElseComplex;
if (sourceElseSink) {
m_rxRealElseComplex[istream] = realElseComplex;
} else {
m_txRealElseComplex[istream] = realElseComplex;
}
for (MIMOChannels::const_iterator it = m_mimoChannels.begin(); it != m_mimoChannels.end(); ++it)
{
auto *msg = new DSPMIMOSignalNotification(notif);
(*it)->pushMessage(msg);
}
if (m_deviceSampleMIMO)
{
if (sourceElseSink)
{
if (istream < m_deviceSampleMIMO->getNbSourceStreams())
{
// forward source changes to ancillary sinks
if (istream < m_basebandSampleSinks.size())
{
for (BasebandSampleSinks::const_iterator it = m_basebandSampleSinks[istream].begin(); it != m_basebandSampleSinks[istream].end(); ++it)
{
auto *msg = new DSPSignalNotification(sampleRate, centerFrequency);
qDebug() << "DSPDeviceMIMOEngine::handleInputMessages: starting " << (*it)->getSinkName().toStdString().c_str();
(*it)->pushMessage(msg);
}
}
// forward changes to MIMO GUI input queue
MessageQueue *guiMessageQueue = m_deviceSampleMIMO->getMessageQueueToGUI();
qDebug("DeviceMIMOEngine::handleInputMessages: DSPMIMOSignalNotification: guiMessageQueue: %p", guiMessageQueue);
if (guiMessageQueue) {
auto* rep = new DSPMIMOSignalNotification(notif); // make a copy for the MIMO GUI
guiMessageQueue->push(rep);
}
// forward changes to spectrum sink if currently active
if (m_spectrumSink && m_spectrumInputSourceElseSink && (m_spectrumInputIndex == istream))
{
auto *spectrumNotif = new DSPSignalNotification(sampleRate, centerFrequency);
m_spectrumSink->pushMessage(spectrumNotif);
}
}
}
else
{
if (istream < m_deviceSampleMIMO->getNbSinkStreams())
{
// forward source changes to channel sources with immediate execution (no queuing)
if (istream < m_basebandSampleSources.size())
{
for (BasebandSampleSources::const_iterator it = m_basebandSampleSources[istream].begin(); it != m_basebandSampleSources[istream].end(); ++it)
{
auto *msg = new DSPSignalNotification(sampleRate, centerFrequency);
qDebug() << "DSPDeviceMIMOEngine::handleSinkMessages: forward message to BasebandSampleSource(" << (*it)->getSourceName().toStdString().c_str() << ")";
(*it)->pushMessage(msg);
}
}
// forward changes to MIMO GUI input queue
MessageQueue *guiMessageQueue = m_deviceSampleMIMO->getMessageQueueToGUI();
qDebug("DSPDeviceMIMOEngine::handleInputMessages: DSPSignalNotification: guiMessageQueue: %p", guiMessageQueue);
if (guiMessageQueue) {
auto* rep = new DSPMIMOSignalNotification(notif); // make a copy for the source GUI
guiMessageQueue->push(rep);
}
// forward changes to spectrum sink if currently active
if (m_spectrumSink && !m_spectrumInputSourceElseSink && (m_spectrumInputIndex == istream))
{
auto *spectrumNotif = new DSPSignalNotification(sampleRate, centerFrequency);
m_spectrumSink->pushMessage(spectrumNotif);
}
}
}
}
return true;
}
// was in handleSynchronousMessages
else if (DSPAcquisitionInit::match(message))
{
setStateRx(gotoIdle(0));
if (m_stateRx == State::StIdle) {
setStateRx(gotoInit(0)); // State goes ready if init is performed
}
return true;
}
else if (DSPAcquisitionStart::match(message))
{
if (m_stateRx == State::StReady) {
setStateRx(gotoRunning(0));
}
return true;
}
else if (DSPAcquisitionStop::match(message))
{
setStateRx(gotoIdle(0));
emit acquisitionStopped();
return true;
}
else if (DSPGenerationInit::match(message))
{
setStateTx(gotoIdle(1));
if (m_stateTx == State::StIdle) {
setStateTx(gotoInit(1)); // State goes ready if init is performed
}
return true;
}
else if (DSPGenerationStart::match(message))
{
if (m_stateTx == State::StReady) {
setStateTx(gotoRunning(1));
}
return true;
}
else if (DSPGenerationStop::match(message))
{
setStateTx(gotoIdle(1));
emit generationStopped();
return true;
}
else if (SetSampleMIMO::match(message)) {
const auto& cmd = (const SetSampleMIMO&) message;
handleSetMIMO(cmd.getSampleMIMO());
emit sampleSet();
return true;
}
else if (AddBasebandSampleSink::match(message))
{
const auto& msg = (const AddBasebandSampleSink&) message;
BasebandSampleSink* sink = msg.getSampleSink();
unsigned int isource = msg.getIndex();
if (isource < m_basebandSampleSinks.size())
{
m_basebandSampleSinks[isource].push_back(sink);
// initialize sample rate and center frequency in the sink:
int sourceStreamSampleRate = m_deviceSampleMIMO->getSourceSampleRate(isource);
quint64 sourceCenterFrequency = m_deviceSampleMIMO->getSourceCenterFrequency(isource);
auto *msgToSink = new DSPSignalNotification(sourceStreamSampleRate, sourceCenterFrequency);
sink->pushMessage(msgToSink);
// start the sink:
if (m_stateRx == State::StRunning) {
sink->start();
}
}
return true;
}
else if (RemoveBasebandSampleSink::match(message))
{
const auto& msg = (const RemoveBasebandSampleSink&) message;
BasebandSampleSink* sink = msg.getSampleSink();
unsigned int isource = msg.getIndex();
if (isource < m_basebandSampleSinks.size())
{
if (m_stateRx == State::StRunning) {
sink->stop();
}
m_basebandSampleSinks[isource].remove(sink);
}
return true;
}
else if (AddBasebandSampleSource::match(message))
{
const auto& msg = (const AddBasebandSampleSource&) message;
BasebandSampleSource *sampleSource = msg.getSampleSource();
unsigned int isink = msg.getIndex();
if (isink < m_basebandSampleSources.size())
{
m_basebandSampleSources[isink].push_back(sampleSource);
// initialize sample rate and center frequency in the sink:
int sinkStreamSampleRate = m_deviceSampleMIMO->getSinkSampleRate(isink);
quint64 sinkCenterFrequency = m_deviceSampleMIMO->getSinkCenterFrequency(isink);
auto *msgToSource = new DSPSignalNotification(sinkStreamSampleRate, sinkCenterFrequency);
sampleSource->pushMessage(msgToSource);
// start the sink:
if (m_stateTx == State::StRunning) {
sampleSource->start();
}
}
return true;
}
else if (RemoveBasebandSampleSource::match(message))
{
const auto& msg = (const RemoveBasebandSampleSource&) message;
BasebandSampleSource* sampleSource = msg.getSampleSource();
unsigned int isink = msg.getIndex();
if (isink < m_basebandSampleSources.size())
{
sampleSource->stop();
m_basebandSampleSources[isink].remove(sampleSource);
}
return true;
}
else if (AddMIMOChannel::match(message))
{
const auto& msg = (const AddMIMOChannel&) message;
MIMOChannel *channel = msg.getChannel();
m_mimoChannels.push_back(channel);
for (unsigned int isource = 0; isource < m_deviceSampleMIMO->getNbSourceStreams(); isource++)
{
auto *notif = new DSPMIMOSignalNotification(
m_deviceSampleMIMO->getSourceSampleRate(isource),
m_deviceSampleMIMO->getSourceCenterFrequency(isource),
true,
isource
);
channel->pushMessage(notif);
}
for (unsigned int isink = 0; isink < m_deviceSampleMIMO->getNbSinkStreams(); isink++)
{
auto *notif = new DSPMIMOSignalNotification(
m_deviceSampleMIMO->getSinkSampleRate(isink),
m_deviceSampleMIMO->getSinkCenterFrequency(isink),
false,
isink
);
channel->pushMessage(notif);
}
if (m_stateRx == State::StRunning) {
channel->startSinks();
}
if (m_stateTx == State::StRunning) {
channel->startSources();
}
return true;
}
else if (RemoveMIMOChannel::match(message))
{
const auto& msg = (const RemoveMIMOChannel&) message;
MIMOChannel *channel = msg.getChannel();
channel->stopSinks();
channel->stopSources();
m_mimoChannels.remove(channel);
return true;
}
else if (AddSpectrumSink::match(message))
{
const auto& msg = (const AddSpectrumSink&) message;
m_spectrumSink = msg.getSampleSink();
return true;
}
else if (RemoveSpectrumSink::match(message))
{
const auto& msg = (const RemoveSpectrumSink&) message;
BasebandSampleSink* spectrumSink = msg.getSampleSink();
spectrumSink->stop();
m_spectrumSink = nullptr;
emit spectrumSinkRemoved();
return true;
}
else if (SetSpectrumSinkInput::match(message))
{
const auto& msg = (const SetSpectrumSinkInput&) message;
bool spectrumInputSourceElseSink = msg.getSourceElseSink();
unsigned int spectrumInputIndex = msg.getIndex();
if ((spectrumInputSourceElseSink != m_spectrumInputSourceElseSink) || (spectrumInputIndex != m_spectrumInputIndex))
{
if ((!spectrumInputSourceElseSink)
&& (spectrumInputIndex < m_deviceSampleMIMO->getNbSinkStreams())
&& m_spectrumSink) // add the source listener
{
auto *notif = new DSPSignalNotification(
m_deviceSampleMIMO->getSinkSampleRate(spectrumInputIndex),
m_deviceSampleMIMO->getSinkCenterFrequency(spectrumInputIndex));
m_spectrumSink->pushMessage(notif);
}
if (m_spectrumSink && spectrumInputSourceElseSink && (spectrumInputIndex < m_deviceSampleMIMO->getNbSinkFifos()))
{
auto *notif = new DSPSignalNotification(
m_deviceSampleMIMO->getSourceSampleRate(spectrumInputIndex),
m_deviceSampleMIMO->getSourceCenterFrequency(spectrumInputIndex));
m_spectrumSink->pushMessage(notif);
}
m_spectrumInputSourceElseSink = spectrumInputSourceElseSink;
m_spectrumInputIndex = spectrumInputIndex;
}
return true;
}
return false;
}
void DSPDeviceMIMOEngine::handleInputMessages()
{
Message* message;
while ((message = m_inputMessageQueue.pop()) != nullptr)
{
qDebug("DSPDeviceMIMOEngine::handleInputMessages: message: %s", message->getIdentifier());
if (handleMessage(*message)) {
delete message;
}
}
}
void DSPDeviceMIMOEngine::configureCorrections(bool dcOffsetCorrection, bool iqImbalanceCorrection, int isource)
{
qDebug() << "DSPDeviceMIMOEngine::configureCorrections";
auto* cmd = new ConfigureCorrection(dcOffsetCorrection, iqImbalanceCorrection, isource);
m_inputMessageQueue.push(cmd);
}
void DSPDeviceMIMOEngine::iqCorrections(SampleVector::iterator begin, SampleVector::iterator end, int isource, bool imbalanceCorrection)
{
for(SampleVector::iterator it = begin; it < end; it++)
{
m_sourcesCorrections[isource].m_iBeta(it->real());
m_sourcesCorrections[isource].m_qBeta(it->imag());
if (imbalanceCorrection)
{
#if IMBALANCE_INT
// acquisition
int64_t xi = (it->m_real - (int32_t) m_sourcesCorrections[isource].m_iBeta) << 5;
int64_t xq = (it->m_imag - (int32_t) m_sourcesCorrections[isource].m_qBeta) << 5;
// phase imbalance
m_sourcesCorrections[isource].m_avgII((xi*xi)>>28); // <I", I">
m_sourcesCorrections[isource].m_avgIQ((xi*xq)>>28); // <I", Q">
if ((int64_t) m_sourcesCorrections[isource].m_avgII != 0)
{
int64_t phi = (((int64_t) m_sourcesCorrections[isource].m_avgIQ)<<28) / (int64_t) m_sourcesCorrections[isource].m_avgII;
m_sourcesCorrections[isource].m_avgPhi(phi);
}
int64_t corrPhi = (((int64_t) m_sourcesCorrections[isource].m_avgPhi) * xq) >> 28; //(m_avgPhi.asDouble()/16777216.0) * ((double) xq);
int64_t yi = xi - corrPhi;
int64_t yq = xq;
// amplitude I/Q imbalance
m_sourcesCorrections[isource].m_avgII2((yi*yi)>>28); // <I, I>
m_sourcesCorrections[isource].m_avgQQ2((yq*yq)>>28); // <Q, Q>
if ((int64_t) m_sourcesCorrections[isource].m_avgQQ2 != 0)
{
int64_t a = (((int64_t) m_sourcesCorrections[isource].m_avgII2)<<28) / (int64_t) m_sourcesCorrections[isource].m_avgQQ2;
Fixed<int64_t, 28> fA(Fixed<int64_t, 28>::internal(), a);
Fixed<int64_t, 28> sqrtA = sqrt((Fixed<int64_t, 28>) fA);
m_sourcesCorrections[isource].m_avgAmp(sqrtA.as_internal());
}
int64_t zq = (((int64_t) m_sourcesCorrections[isource].m_avgAmp) * yq) >> 28;
it->m_real = yi >> 5;
it->m_imag = zq >> 5;
#else
// DC correction and conversion
float xi = (float) (it->m_real - (int32_t) m_sourcesCorrections[isource].m_iBeta) / SDR_RX_SCALEF;
float xq = (float) (it->m_imag - (int32_t) m_sourcesCorrections[isource].m_qBeta) / SDR_RX_SCALEF;
// phase imbalance
m_sourcesCorrections[isource].m_avgII(xi*xi); // <I", I">
m_sourcesCorrections[isource].m_avgIQ(xi*xq); // <I", Q">
if (m_sourcesCorrections[isource].m_avgII.asDouble() != 0) {
m_sourcesCorrections[isource].m_avgPhi(m_sourcesCorrections[isource].m_avgIQ.asDouble()/m_sourcesCorrections[isource].m_avgII.asDouble());
}
const float& yi = xi; // the in phase remains the reference
float yq = xq - (float) m_sourcesCorrections[isource].m_avgPhi.asDouble()*xi;
// amplitude I/Q imbalance
m_sourcesCorrections[isource].m_avgII2(yi*yi); // <I, I>
m_sourcesCorrections[isource].m_avgQQ2(yq*yq); // <Q, Q>
if (m_sourcesCorrections[isource].m_avgQQ2.asDouble() != 0) {
m_sourcesCorrections[isource].m_avgAmp(sqrt(m_sourcesCorrections[isource].m_avgII2.asDouble() / m_sourcesCorrections[isource].m_avgQQ2.asDouble()));
}
// final correction
const float& zi = yi; // the in phase remains the reference
auto zq = (float) (m_sourcesCorrections[isource].m_avgAmp.asDouble() * yq);
// convert and store
it->m_real = (FixReal) (zi * SDR_RX_SCALEF);
it->m_imag = (FixReal) (zq * SDR_RX_SCALEF);
#endif
}
else
{
// DC correction only
it->m_real -= (int32_t) m_sourcesCorrections[isource].m_iBeta;
it->m_imag -= (int32_t) m_sourcesCorrections[isource].m_qBeta;
}
}
}