1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-03 07:21:14 -05:00
sdrangel/plugins/channelrx/demoddatv/leansdr/ldpc.h
2019-07-17 13:57:50 +02:00

526 lines
17 KiB
C++

// This file is part of LeanSDR Copyright (C) 2016-2018 <pabr@pabr.org>.
// See the toplevel README for more information.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#ifndef LEANSDR_LDPC_H
#define LEANSDR_LDPC_H
#define lfprintf(...) \
{ \
}
namespace leansdr
{
// LDPC sparse matrix specified like in the DVB-S2 standard
// Taddr must be wide enough to index message bits and address bits.
template <typename Taddr>
struct ldpc_table
{
// TBD Save space
static const int MAX_ROWS = 162; // 64800 * (9/10) / 360
static const int MAX_COLS = 13;
int q;
int nrows;
struct row
{
int ncols;
Taddr cols[MAX_COLS];
} rows[MAX_ROWS];
};
// LDPC ENGINE
// SOFTBITs can be hard (e.g. bool) or soft (e.g. llr_t).
// They are stored as SOFTWORDs containing SWSIZE SOFTBITs.
// See interface in softword.h.
template <typename SOFTBIT, typename SOFTWORD, int SWSIZE, typename Taddr>
struct ldpc_engine
{
ldpc_engine()
: vnodes(NULL), cnodes(NULL)
{
}
// vnodes: Value/variable nodes (message bits)
// cnodes: Check nodes (parity bits)
int k; // Message size in bits
int n; // Codeword size in bits
struct node
{
Taddr *edges;
int nedges;
static const int CHUNK = 4; // Grow edges[] in steps of CHUNK.
void append(Taddr a)
{
if (nedges % CHUNK == 0)
{ // Full ?
edges = (Taddr *)realloc(edges, (nedges + CHUNK) * sizeof(Taddr));
if (!edges)
fatal("realloc");
}
edges[nedges++] = a;
}
};
node *vnodes; // [k]
node *cnodes; // [n-k]
// Initialize from a S2-style table.
ldpc_engine(const ldpc_table<Taddr> *table, int _k, int _n)
: k(_k), n(_n)
{
// Sanity checks
if (360 % SWSIZE)
fatal("Bad LDPC word size");
if (k % SWSIZE)
fatal("Bad LDPC k");
if (n % SWSIZE)
fatal("Bad LDPC n");
if (k != table->nrows * 360)
fatal("Bad table");
int n_k = n - k;
if (table->q * 360 != n_k)
fatal("Bad q");
vnodes = new node[k];
memset(vnodes, 0, sizeof(node) * k);
cnodes = new node[n_k];
memset(cnodes, 0, sizeof(node) * n_k);
// Expand the graph.
int m = 0;
// Iterate over rows
for (const typename ldpc_table<Taddr>::row *prow = table->rows;
prow < table->rows + table->nrows;
++prow)
{
// Process 360 bits per row.
int q = table->q;
int qoffs = 0;
for (int mw = 360; mw--; ++m, qoffs += q)
{
const Taddr *pa = prow->cols;
for (int nc = prow->ncols; nc--; ++pa)
{
int a = (int)*pa + qoffs;
if (a >= n_k)
a -= n_k; // Modulo n-k. Note qoffs<360*q.
if (a >= n_k)
fail("Invalid LDPC table");
vnodes[m].append(a);
cnodes[a].append(m);
}
}
}
}
void print_node_stats()
{
int nedges = count_edges(vnodes, k);
fprintf(stderr, "LDPC(%5d,%5d)(%.2f)"
" %5.2f edges/vnode, %5.2f edges/cnode\n",
k, n - k, (float)k / n, (float)nedges / k, (float)nedges / (n - k));
}
int count_edges(node *nodes, int nnodes)
{
int c = 0;
for (int i = 0; i < nnodes; ++i)
c += nodes[i].nedges;
return c;
}
// k: Message size in bits
// n: Codeword size in bits
// integrate: Optional S2-style post-processing
#if 0
void encode_hard(const ldpc_table<Taddr> *table, const uint8_t *msg,
int k, int n, uint8_t *parity, bool integrate=true) {
// Sanity checks
if ( 360 % SWSIZE ) fatal("Bad LDPC word size");
if ( k % SWSIZE ) fatal("Bad LDPC k");
if ( n % SWSIZE ) fatal("Bad LDPC n");
if ( k != table->nrows*360 ) fatal("Bad table");
int n_k = n - k;
if ( table->q*360 != n_k ) fatal("Bad q");
for ( int i=0; i<n_k/SWSIZE; ++i ) softword_zero(&parity[i]);
// Iterate over rows
for ( const typename ldpc_table<Taddr>::row *prow = table->rows; // quirk
prow < table->rows+table->nrows;
++prow ) {
// Process 360 bits per row, in words of SWSIZE bits
int q = table->q;
int qoffs = 0;
for ( int mw=360/SWSIZE; mw--; ++msg ) {
SOFTWORD msgword = *msg;
for ( int wbit=0; wbit<SWSIZE; ++wbit,qoffs+=q ) {
SOFTBIT msgbit = softword_get(msgword, wbit);
if ( ! msgbit ) continue; // TBD Generic soft version
const Taddr *pa = prow->cols;
for ( int nc=prow->ncols; nc--; ++pa ) {
// Don't wrap modulo range of Taddr
int a = (int)*pa + qoffs;
// Note: qoffs < 360*q=n-k
if ( a >= n_k ) a -= n_k; // TBD not predictable
softwords_flip(parity, a);
}
}
}
}
if ( integrate )
integrate_bits(parity, parity, n_k/SWSIZE);
}
#endif
void encode(const ldpc_table<Taddr> *table, const SOFTWORD *msg,
int k, int n, SOFTWORD *parity, int integrate = true)
{
// Sanity checks
if (360 % SWSIZE)
fatal("Bad LDPC word size");
if (k % SWSIZE)
fatal("Bad LDPC k");
if (n % SWSIZE)
fatal("Bad LDPC n");
if (k != table->nrows * 360)
fatal("Bad table");
int n_k = n - k;
if (table->q * 360 != n_k)
fatal("Bad q");
for (int i = 0; i < n_k / SWSIZE; ++i)
softword_zero(&parity[i]);
// Iterate over rows
for (const typename ldpc_table<Taddr>::row *prow = table->rows; // quirk
prow < table->rows + table->nrows;
++prow)
{
// Process 360 bits per row, in words of SWSIZE bits
int q = table->q;
int qoffs = 0;
for (int mw = 360 / SWSIZE; mw--; ++msg)
{
SOFTWORD msgword = *msg;
for (int wbit = 0; wbit < SWSIZE; ++wbit, qoffs += q)
{
SOFTBIT msgbit = softword_get(msgword, wbit);
if (!softbit_harden(msgbit))
continue;
const Taddr *pa = prow->cols;
for (int nc = prow->ncols; nc--; ++pa)
{
int a = (int)*pa + qoffs;
// Note: qoffs < 360*q=n-k
if (a >= n_k)
a -= n_k; // TBD not predictable
softwords_flip(parity, a);
}
}
}
}
if (integrate)
integrate_bits(parity, parity, n_k / SWSIZE);
}
// Flip bits connected to parity errors, one at a time,
// as long as things improve and max_bitflips is not exceeded.
// cw: codeword (k value bits followed by n-k check bits)
static const int PPCM = 39;
typedef int64_t score_t;
score_t compute_scores(SOFTWORD *m, SOFTWORD *p, SOFTWORD *q, int nc,
score_t *score, int k)
{
int total = 0;
memset(score, 0, k * sizeof(*score));
for (int c = 0; c < nc; ++c)
{
SOFTBIT err = softwords_xor(p, q, c);
if (softbit_harden(err))
{
Taddr *pe = cnodes[c].edges;
for (int e = cnodes[c].nedges; e--; ++pe)
{
int v = *pe;
int s = err * softwords_weight<SOFTBIT, SOFTWORD>(m, v) * PPCM / vnodes[v].nedges;
//fprintf(stderr, "c[%d] bad => v[%d] += %d (%d*%d)\n",
///c, v, s, err, softwords_weight<SOFTBIT,SOFTWORD>(m,*pe));
score[v] += s;
total += s;
}
}
}
return total;
}
int decode_bitflip(const ldpc_table<Taddr> *table, SOFTWORD *cw,
int k, int n,
int max_bitflips)
{
if (!vnodes)
fail("LDPC graph not initialized");
int n_k = n - k;
// Compute the expected check bits (without the final mixing)
SOFTWORD *expected = new SOFTWORD[n_k / SWSIZE]; // Forbidden to statically allocate with non constant size
encode(table, cw, k, n, expected, false);
// Reverse the integrator mixing from the received check bits
SOFTWORD *received = new SOFTWORD[n_k / SWSIZE]; // Forbidden to statically allocate with non constant size
diff_bits(cw + k / SWSIZE, received, n_k / SWSIZE);
// Compute initial scores
score_t *score = new score_t[k]; // Forbidden to statically allocate with non constant size
score_t tots = compute_scores(cw, expected, received, n_k, score, k);
lfprintf(stderr, "Initial score %d\n", (int)tots);
int nflipped = 0;
score_t score_threshold;
{
SOFTBIT one;
softbit_set(&one, true);
score_threshold = (int)one * 2;
}
bool progress = true;
while (progress && nflipped < max_bitflips)
{
progress = false;
// Try to flip parity bits.
// Due to differential decoding, they appear as consecutive errors.
SOFTBIT prev_err = softwords_xor(expected, received, 0);
for (int b = 0; b < n - k - 1; ++b)
{
prev_err = softwords_xor(expected, received, b); //TBD
SOFTBIT err = softwords_xor(expected, received, b + 1);
if (softbit_harden(prev_err) && softbit_harden(err))
{
lfprintf(stderr, "flip parity %d\n", b);
softwords_flip(received, b);
softwords_flip(received, b + 1);
++nflipped; // Counts as one flip before differential decoding.
progress = true;
int dtot = 0;
// Depenalize adjacent message bits.
{
Taddr *pe = cnodes[b].edges;
for (int e = cnodes[b].nedges; e--; ++pe)
{
int d = prev_err * softwords_weight<SOFTBIT, SOFTWORD>(cw, *pe) * PPCM / vnodes[*pe].nedges;
score[*pe] -= d;
dtot -= d;
}
}
{
Taddr *pe = cnodes[b + 1].edges;
for (int e = cnodes[b + 1].nedges; e--; ++pe)
{
int d = err * softwords_weight<SOFTBIT, SOFTWORD>(cw, *pe) * PPCM / vnodes[*pe].nedges;
score[*pe] -= d;
dtot -= d;
}
}
tots += dtot;
#if 1
// Also update the codeword in-place.
// TBD Useful for debugging only.
softwords_flip(cw, k + b);
#endif
// TBD version soft. err = ! err;
}
prev_err = err;
} // c nodes
score_t maxs = -(1 << 30);
for (int v = 0; v < k; ++v)
if (score[v] > maxs)
maxs = score[v];
if (!maxs)
break;
lfprintf(stderr, "maxs %d\n", (int)maxs);
// Try to flip each message bits with maximal score
for (int v = 0; v < k; ++v)
{
if (score[v] < score_threshold)
continue;
// if ( score[v] < maxs*9/10 ) continue;
if (score[v] < maxs - 4)
continue;
lfprintf(stderr, " flip %d score=%d\n", (int)v, (int)score[v]);
// Update expected parities and scores that depend on them.
score_t dtot = 0;
for (int commit = 0; commit <= 1; ++commit)
{
Taddr *pe = vnodes[v].edges;
for (int e = vnodes[v].nedges; e--; ++pe)
{
Taddr c = *pe;
SOFTBIT was_bad = softwords_xor(expected, received, c);
if (softbit_harden(was_bad))
{
Taddr *pe = cnodes[c].edges;
for (int e = cnodes[c].nedges; e--; ++pe)
{
int d = was_bad * softwords_weight<SOFTBIT, SOFTWORD>(cw, *pe) * PPCM / vnodes[*pe].nedges;
if (commit)
score[*pe] -= d;
else
dtot -= d;
}
}
softwords_flip(expected, c);
SOFTBIT is_bad = softwords_xor(expected, received, c);
if (softbit_harden(is_bad))
{
Taddr *pe = cnodes[c].edges;
for (int e = cnodes[c].nedges; e--; ++pe)
{
int d = is_bad * softwords_weight<SOFTBIT, SOFTWORD>(cw, *pe) * PPCM / vnodes[*pe].nedges;
if (commit)
score[*pe] += d;
else
dtot += d;
}
}
if (!commit)
softwords_flip(expected, c);
}
if (!commit)
{
if (dtot >= 0)
{
lfprintf(stderr, " abort %d\n", v);
break; // Next v
}
}
else
{
softwords_flip(cw, v);
++nflipped;
tots += dtot;
progress = true;
v = k - 1; // Force exit to update maxs ?
}
} // commit
} // v
lfprintf(stderr, "progress %d\n", progress);
#if 0
fprintf(stderr, "CHECKING TOTS INCREMENT (slow) %d\n", tots);
score_t tots2 = compute_scores(cw, expected, received, n_k, score, k);
if ( tots2 != tots ) fail("bad tots update");
#endif
}
delete[] score;
delete[] received;
delete[] expected;
return nflipped;
}
// EN 302 307-1 5.3.2.1 post-processing of parity bits.
// In-place allowed.
#if 1
static void integrate_bits(const SOFTWORD *in, SOFTWORD *out, int nwords)
{
SOFTBIT sum;
softbit_clear(&sum);
for (int i = 0; i < nwords; ++i)
{
SOFTWORD w = in[i];
for (int b = 0; b < SWSIZE; ++b)
{
sum = softbit_xor(sum, softword_get(w, b));
softword_write(w, b, sum);
}
out[i] = w;
}
}
#else
// Optimized for hard_sb
static void integrate_bits(const uint8_t *in, uint8_t *out, int nwords)
{
// TBD Optimize
uint8_t prev = 0;
for (int i = 0; i < nwords; ++i)
{
uint8_t c = in[i];
for (int j = SWSIZE; j--;)
{
c ^= prev << j;
prev = (c >> j) & 1;
}
out[i] = c;
}
}
#endif
// Undo EN 302 307-1 5.3.2.1, post-processing of parity bits.
// In-place allowed.
#if 1
static void diff_bits(const SOFTWORD *in, SOFTWORD *out, int nwords)
{
SOFTBIT prev;
softbit_clear(&prev);
for (int i = 0; i < nwords; ++i, ++in, ++out)
{
SOFTWORD w = *in;
for (int b = 0; b < SWSIZE; ++b)
{
SOFTBIT n = softword_get(w, b);
softword_write(w, b, softbit_xor(prev, n));
prev = n;
}
*out = w;
}
}
#else
// Optimized for hard_sb
static void diff_bits(const uint8_t *in, uint8_t *out, int nwords)
{
uint8_t prev = 0;
for (int i = 0; i < nwords; ++i)
{
uint8_t c = in[i];
out[i] = c ^ (prev | (c >> 1));
prev = (c & 1) << (SWSIZE - 1);
}
}
#endif
}; // ldpc_engine
} // namespace leansdr
#endif // LEANSDR_LDPC_H