1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-05 16:31:15 -05:00
sdrangel/plugins/channelrx/demodssb/ssbdemod.cpp

548 lines
17 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany //
// written by Christian Daniel //
// (c) 2014 Modified by John Greb
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QTime>
#include <QDebug>
#include <stdio.h>
#include "audio/audiooutput.h"
#include "audio/audionetsink.h"
#include "dsp/dspengine.h"
#include "dsp/downchannelizer.h"
#include "dsp/threadedbasebandsamplesink.h"
#include "dsp/dspcommands.h"
#include "device/devicesourceapi.h"
#include "util/db.h"
#include "ssbdemod.h"
MESSAGE_CLASS_DEFINITION(SSBDemod::MsgConfigureSSBDemod, Message)
MESSAGE_CLASS_DEFINITION(SSBDemod::MsgConfigureSSBDemodPrivate, Message)
MESSAGE_CLASS_DEFINITION(SSBDemod::MsgConfigureChannelizer, Message)
const QString SSBDemod::m_channelIdURI = "de.maintech.sdrangelove.channel.ssb";
const QString SSBDemod::m_channelId = "SSBDemod";
const int SSBDemod::m_udpBlockSize = 512;
SSBDemod::SSBDemod(DeviceSourceAPI *deviceAPI) :
ChannelSinkAPI(m_channelIdURI),
m_deviceAPI(deviceAPI),
m_audioBinaual(false),
m_audioFlipChannels(false),
m_dsb(false),
m_audioMute(false),
m_agc(12000, agcTarget, 1e-2),
m_agcActive(false),
m_agcClamping(false),
m_agcNbSamples(12000),
m_agcPowerThreshold(1e-2),
m_agcThresholdGate(0),
m_audioActive(false),
m_sampleSink(0),
m_audioFifo(24000),
m_settingsMutex(QMutex::Recursive)
{
setObjectName(m_channelId);
m_Bandwidth = 5000;
m_LowCutoff = 300;
m_volume = 2.0;
m_spanLog2 = 3;
m_inputSampleRate = 48000;
m_inputFrequencyOffset = 0;
m_audioSampleRate = DSPEngine::instance()->getAudioSampleRate();
m_audioBuffer.resize(1<<14);
m_audioBufferFill = 0;
m_undersampleCount = 0;
m_sum = 0;
m_usb = true;
m_magsq = 0.0f;
m_magsqSum = 0.0f;
m_magsqPeak = 0.0f;
m_magsqCount = 0;
m_agc.setClampMax(SDR_RX_SCALED*SDR_RX_SCALED);
m_agc.setClamping(m_agcClamping);
SSBFilter = new fftfilt(m_LowCutoff / m_audioSampleRate, m_Bandwidth / m_audioSampleRate, ssbFftLen);
DSBFilter = new fftfilt((2.0f * m_Bandwidth) / m_audioSampleRate, 2 * ssbFftLen);
DSPEngine::instance()->addAudioSink(&m_audioFifo);
m_audioNetSink = new AudioNetSink(0); // parent thread allocated dynamically
m_audioNetSink->setDestination(m_settings.m_udpAddress, m_settings.m_udpPort);
m_channelizer = new DownChannelizer(this);
m_threadedChannelizer = new ThreadedBasebandSampleSink(m_channelizer, this);
m_deviceAPI->addThreadedSink(m_threadedChannelizer);
m_deviceAPI->addChannelAPI(this);
applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true);
applySettings(m_settings, true);
}
SSBDemod::~SSBDemod()
{
if (SSBFilter) delete SSBFilter;
if (DSBFilter) delete DSBFilter;
DSPEngine::instance()->removeAudioSink(&m_audioFifo);
delete m_audioNetSink;
m_deviceAPI->removeChannelAPI(this);
m_deviceAPI->removeThreadedSink(m_threadedChannelizer);
delete m_threadedChannelizer;
delete m_channelizer;
}
bool SSBDemod::isAudioNetSinkRTPCapable() const
{
return m_audioNetSink && m_audioNetSink->isRTPCapable();
}
void SSBDemod::configure(MessageQueue* messageQueue,
Real Bandwidth,
Real LowCutoff,
Real volume,
int spanLog2,
bool audioBinaural,
bool audioFlipChannel,
bool dsb,
bool audioMute,
bool agc,
bool agcClamping,
int agcTimeLog2,
int agcPowerThreshold,
int agcThresholdGate)
{
Message* cmd = MsgConfigureSSBDemodPrivate::create(
Bandwidth,
LowCutoff,
volume,
spanLog2,
audioBinaural,
audioFlipChannel,
dsb,
audioMute,
agc,
agcClamping,
agcTimeLog2,
agcPowerThreshold,
agcThresholdGate);
messageQueue->push(cmd);
}
void SSBDemod::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool positiveOnly __attribute__((unused)))
{
Complex ci;
fftfilt::cmplx *sideband;
int n_out;
m_settingsMutex.lock();
int decim = 1<<(m_spanLog2 - 1);
unsigned char decim_mask = decim - 1; // counter LSB bit mask for decimation by 2^(m_scaleLog2 - 1)
for(SampleVector::const_iterator it = begin; it < end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if(m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
{
if (m_dsb)
{
n_out = DSBFilter->runDSB(ci, &sideband);
}
else
{
n_out = SSBFilter->runSSB(ci, &sideband, m_usb);
}
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
else
{
n_out = 0;
}
for (int i = 0; i < n_out; i++)
{
// Downsample by 2^(m_scaleLog2 - 1) for SSB band spectrum display
// smart decimation with bit gain using float arithmetic (23 bits significand)
m_sum += sideband[i];
if (!(m_undersampleCount++ & decim_mask))
{
Real avgr = m_sum.real() / decim;
Real avgi = m_sum.imag() / decim;
m_magsq = (avgr * avgr + avgi * avgi) / (SDR_RX_SCALED*SDR_RX_SCALED);
m_magsqSum += m_magsq;
if (m_magsq > m_magsqPeak)
{
m_magsqPeak = m_magsq;
}
m_magsqCount++;
if (!m_dsb & !m_usb)
{ // invert spectrum for LSB
m_sampleBuffer.push_back(Sample(avgi, avgr));
}
else
{
m_sampleBuffer.push_back(Sample(avgr, avgi));
}
m_sum.real(0.0);
m_sum.imag(0.0);
}
double agcVal = m_agcActive ? m_agc.feedAndGetValue(sideband[i]) : 10.0; // 10.0 for 3276.8, 1.0 for 327.68
m_audioActive = agcVal != 0.0;
if (m_audioMute)
{
m_audioBuffer[m_audioBufferFill].r = 0;
m_audioBuffer[m_audioBufferFill].l = 0;
if (m_settings.m_copyAudioToUDP) { m_audioNetSink->write(0); }
}
else
{
if (m_audioBinaual)
{
if (m_audioFlipChannels)
{
m_audioBuffer[m_audioBufferFill].r = (qint16)(sideband[i].imag() * m_volume * agcVal);
m_audioBuffer[m_audioBufferFill].l = (qint16)(sideband[i].real() * m_volume * agcVal);
}
else
{
m_audioBuffer[m_audioBufferFill].r = (qint16)(sideband[i].real() * m_volume * agcVal);
m_audioBuffer[m_audioBufferFill].l = (qint16)(sideband[i].imag() * m_volume * agcVal);
}
if (m_settings.m_copyAudioToUDP) { m_audioNetSink->write(m_audioBuffer[m_audioBufferFill].r + m_audioBuffer[m_audioBufferFill].l); }
}
else
{
Real demod = (sideband[i].real() + sideband[i].imag()) * 0.7;
qint16 sample = (qint16)(demod * m_volume * agcVal);
m_audioBuffer[m_audioBufferFill].l = sample;
m_audioBuffer[m_audioBufferFill].r = sample;
if (m_settings.m_copyAudioToUDP) { m_audioNetSink->write(sample); }
}
}
++m_audioBufferFill;
if (m_audioBufferFill >= m_audioBuffer.size())
{
uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 10);
if (res != m_audioBufferFill)
{
qDebug("SSBDemod::feed: %u/%u samples written", res, m_audioBufferFill);
}
m_audioBufferFill = 0;
}
}
}
uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 10);
if (res != m_audioBufferFill)
{
qDebug("SSBDemod::feed: %u/%u tail samples written", res, m_audioBufferFill);
}
m_audioBufferFill = 0;
if (m_sampleSink != 0)
{
m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), !m_dsb);
}
m_sampleBuffer.clear();
m_settingsMutex.unlock();
}
void SSBDemod::start()
{
applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true);
}
void SSBDemod::stop()
{
}
bool SSBDemod::handleMessage(const Message& cmd)
{
if (DownChannelizer::MsgChannelizerNotification::match(cmd))
{
DownChannelizer::MsgChannelizerNotification& notif = (DownChannelizer::MsgChannelizerNotification&) cmd;
qDebug("SSBDemod::handleMessage: MsgChannelizerNotification: m_sampleRate");
applyChannelSettings(notif.getSampleRate(), notif.getFrequencyOffset());
return true;
}
else if (MsgConfigureChannelizer::match(cmd))
{
MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd;
qDebug() << "SSBDemod::handleMessage: MsgConfigureChannelizer: sampleRate: " << cfg.getSampleRate()
<< " centerFrequency: " << cfg.getCenterFrequency();
m_channelizer->configure(m_channelizer->getInputMessageQueue(),
cfg.getSampleRate(),
cfg.getCenterFrequency());
return true;
}
else if (MsgConfigureSSBDemod::match(cmd))
{
MsgConfigureSSBDemod& cfg = (MsgConfigureSSBDemod&) cmd;
qDebug("SSBDemod::handleMessage: MsgConfigureSSBDemod");
applySettings(cfg.getSettings(), cfg.getForce());
return true;
}
else if (BasebandSampleSink::MsgThreadedSink::match(cmd))
{
BasebandSampleSink::MsgThreadedSink& cfg = (BasebandSampleSink::MsgThreadedSink&) cmd;
const QThread *thread = cfg.getThread();
qDebug("SSBDemod::handleMessage: BasebandSampleSink::MsgThreadedSink: %p", thread);
m_audioNetSink->moveToThread(const_cast<QThread*>(thread)); // use the thread for udp sinks
return true;
}
else if (DSPSignalNotification::match(cmd))
{
return true;
}
else
{
if(m_sampleSink != 0)
{
return m_sampleSink->handleMessage(cmd);
}
else
{
return false;
}
}
}
void SSBDemod::applyChannelSettings(int inputSampleRate, int inputFrequencyOffset, bool force)
{
qDebug() << "SSBDemod::applyChannelSettings:"
<< " inputSampleRate: " << inputSampleRate
<< " inputFrequencyOffset: " << inputFrequencyOffset;
if ((m_inputFrequencyOffset != inputFrequencyOffset) ||
(m_inputSampleRate != inputSampleRate) || force)
{
m_nco.setFreq(-inputFrequencyOffset, inputSampleRate);
}
if ((m_inputSampleRate != inputSampleRate) || force)
{
m_settingsMutex.lock();
m_interpolator.create(16, inputSampleRate, m_Bandwidth * 1.5f, 2.0f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) inputSampleRate / (Real) m_settings.m_audioSampleRate;
m_settingsMutex.unlock();
}
m_inputSampleRate = inputSampleRate;
m_inputFrequencyOffset = inputFrequencyOffset;
}
void SSBDemod::applySettings(const SSBDemodSettings& settings, bool force)
{
qDebug() << "SSBDemod::applySettings:"
<< " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
<< " m_rfBandwidth: " << settings.m_rfBandwidth
<< " m_lowCutoff: " << settings.m_lowCutoff
<< " m_volume: " << settings.m_volume
<< " m_spanLog2: " << settings.m_spanLog2
<< " m_audioBinaual: " << settings.m_audioBinaural
<< " m_audioFlipChannels: " << settings.m_audioFlipChannels
<< " m_dsb: " << settings.m_dsb
<< " m_audioMute: " << settings.m_audioMute
<< " m_copyAudioToUDP: " << settings.m_copyAudioToUDP
<< " m_copyAudioUseRTP: " << settings.m_copyAudioUseRTP
<< " m_agcActive: " << settings.m_agc
<< " m_agcClamping: " << settings.m_agcClamping
<< " m_agcTimeLog2: " << settings.m_agcTimeLog2
<< " agcPowerThreshold: " << settings.m_agcPowerThreshold
<< " agcThresholdGate: " << settings.m_agcThresholdGate;
if((m_settings.m_rfBandwidth != settings.m_rfBandwidth) ||
(m_settings.m_lowCutoff != settings.m_lowCutoff) ||
(m_settings.m_audioSampleRate != settings.m_audioSampleRate) || force)
{
float band, lowCutoff;
band = settings.m_rfBandwidth;
lowCutoff = settings.m_lowCutoff;
m_audioSampleRate = settings.m_audioSampleRate;
if (band < 0) {
band = -band;
lowCutoff = -lowCutoff;
m_usb = false;
} else {
m_usb = true;
}
if (band < 100.0f)
{
band = 100.0f;
lowCutoff = 0;
}
m_Bandwidth = band;
m_LowCutoff = lowCutoff;
m_settingsMutex.lock();
m_interpolator.create(16, m_inputSampleRate, m_Bandwidth * 1.5f, 2.0f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_inputSampleRate / (Real) m_settings.m_audioSampleRate;
SSBFilter->create_filter(m_LowCutoff / (float) m_audioSampleRate, m_Bandwidth / (float) m_audioSampleRate);
DSBFilter->create_dsb_filter((2.0f * m_Bandwidth) / (float) m_audioSampleRate);
m_settingsMutex.unlock();
}
if ((m_settings.m_volume != settings.m_volume) || force)
{
m_volume = settings.m_volume;
m_volume /= 4.0; // for 3276.8
}
if ((m_settings.m_agcTimeLog2 != settings.m_agcTimeLog2) ||
(m_settings.m_agcPowerThreshold != settings.m_agcPowerThreshold) ||
(m_settings.m_agcThresholdGate != settings.m_agcThresholdGate) ||
(m_settings.m_agcClamping != settings.m_agcClamping) || force)
{
int agcNbSamples = 48 * (1<<settings.m_agcTimeLog2);
m_agc.setThresholdEnable(settings.m_agcPowerThreshold != -SSBDemodSettings::m_minPowerThresholdDB);
double agcPowerThreshold = CalcDb::powerFromdB(settings.m_agcPowerThreshold) * (SDR_RX_SCALED*SDR_RX_SCALED);
int agcThresholdGate = 48 * settings.m_agcThresholdGate; // ms
bool agcClamping = settings.m_agcClamping;
if (m_agcNbSamples != agcNbSamples)
{
m_settingsMutex.lock();
m_agc.resize(agcNbSamples, agcTarget);
m_agc.setStepDownDelay(agcNbSamples);
m_agcNbSamples = agcNbSamples;
m_settingsMutex.unlock();
}
if (m_agcPowerThreshold != agcPowerThreshold)
{
m_agc.setThreshold(agcPowerThreshold);
m_agcPowerThreshold = agcPowerThreshold;
}
if (m_agcThresholdGate != agcThresholdGate)
{
m_agc.setGate(agcThresholdGate);
m_agcThresholdGate = agcThresholdGate;
}
if (m_agcClamping != agcClamping)
{
m_agc.setClamping(agcClamping);
m_agcClamping = agcClamping;
}
qDebug() << "SBDemod::applySettings: AGC:"
<< " agcNbSamples: " << agcNbSamples
<< " agcPowerThreshold: " << agcPowerThreshold
<< " agcThresholdGate: " << agcThresholdGate
<< " agcClamping: " << agcClamping;
}
if ((m_settings.m_udpAddress != settings.m_udpAddress)
|| (m_settings.m_udpPort != settings.m_udpPort) || force)
{
m_audioNetSink->setDestination(settings.m_udpAddress, settings.m_udpPort);
}
if ((settings.m_copyAudioUseRTP != m_settings.m_copyAudioUseRTP) || force)
{
if (settings.m_copyAudioUseRTP)
{
if (m_audioNetSink->selectType(AudioNetSink::SinkRTP)) {
qDebug("NFMDemod::applySettings: set audio sink to RTP mode");
} else {
qWarning("NFMDemod::applySettings: RTP support for audio sink not available. Fall back too UDP");
}
}
else
{
if (m_audioNetSink->selectType(AudioNetSink::SinkUDP)) {
qDebug("NFMDemod::applySettings: set audio sink to UDP mode");
} else {
qWarning("NFMDemod::applySettings: failed to set audio sink to UDP mode");
}
}
}
m_spanLog2 = settings.m_spanLog2;
m_audioBinaual = settings.m_audioBinaural;
m_audioFlipChannels = settings.m_audioFlipChannels;
m_dsb = settings.m_dsb;
m_audioMute = settings.m_audioMute;
m_agcActive = settings.m_agc;
m_settings = settings;
}
QByteArray SSBDemod::serialize() const
{
return m_settings.serialize();
}
bool SSBDemod::deserialize(const QByteArray& data)
{
if (m_settings.deserialize(data))
{
MsgConfigureSSBDemod *msg = MsgConfigureSSBDemod::create(m_settings, true);
m_inputMessageQueue.push(msg);
return true;
}
else
{
m_settings.resetToDefaults();
MsgConfigureSSBDemod *msg = MsgConfigureSSBDemod::create(m_settings, true);
m_inputMessageQueue.push(msg);
return false;
}
}