1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-12-23 10:05:46 -05:00
sdrangel/sdrbase/dsp/inthalfbandfilter.h

916 lines
29 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016 F4EXB //
// written by Edouard Griffiths //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef INCLUDE_INTHALFBANDFILTER_H
#define INCLUDE_INTHALFBANDFILTER_H
#include <stdint.h>
#include "dsp/dsptypes.h"
#include "dsp/hbfiltertraits.h"
#include "export.h"
template<typename AccuType, uint32_t HBFilterOrder>
class SDRBASE_API IntHalfbandFilter {
public:
IntHalfbandFilter() :
m_ptr(0),
m_state(0)
{
for (int i = 0; i < HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1; i++)
{
m_samples[i][0] = 0;
m_samples[i][1] = 0;
}
}
// downsample by 2, return center part of original spectrum
bool workDecimateCenter(Sample* sample)
{
// insert sample into ring-buffer
m_samples[m_ptr][0] = sample->real();
m_samples[m_ptr][1] = sample->imag();
switch(m_state)
{
case 0:
// advance write-pointer
m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
default:
// save result
doFIR(sample);
// advance write-pointer
m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
// upsample by 2, return center part of original spectrum
bool workInterpolateCenterZeroStuffing(Sample* sampleIn, Sample *SampleOut)
{
switch(m_state)
{
case 0:
// insert sample into ring-buffer
m_samples[m_ptr][0] = 0;
m_samples[m_ptr][1] = 0;
// save result
doFIR(SampleOut);
// advance write-pointer
m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
// next state
m_state = 1;
// tell caller we didn't consume the sample
return false;
default:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
// save result
doFIR(SampleOut);
// advance write-pointer
m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
}
}
/** Optimized upsampler by 2 not calculating FIR with inserted null samples */
bool workInterpolateCenter(Sample* sampleIn, Sample *SampleOut)
{
switch(m_state)
{
case 0:
// return the middle peak
SampleOut->setReal(m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][0]);
SampleOut->setImag(m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][1]);
m_state = 1; // next state
return false; // tell caller we didn't consume the sample
default:
// calculate with non null samples
doInterpolateFIR(SampleOut);
// insert sample into ring double buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][0] = sampleIn->real();
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][1] = sampleIn->imag();
// advance pointer
if (m_ptr < (HBFIRFilterTraits<HBFilterOrder>::hbOrder/2) - 1) {
m_ptr++;
} else {
m_ptr = 0;
}
m_state = 0; // next state
return true; // tell caller we consumed the sample
}
}
// bool workDecimateCenter(qint32 *x, qint32 *y)
// {
// // insert sample into ring-buffer
// m_samples[m_ptr][0] = *x;
// m_samples[m_ptr][1] = *y;
//
// switch(m_state)
// {
// case 0:
// // advance write-pointer
// m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
//
// // next state
// m_state = 1;
//
// // tell caller we don't have a new sample
// return false;
//
// default:
// // save result
// doFIR(x, y);
//
// // advance write-pointer
// m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
//
// // next state
// m_state = 0;
//
// // tell caller we have a new sample
// return true;
// }
// }
// downsample by 2, return edges of spectrum rotated into center - unused
// bool workDecimateFullRotate(Sample* sample)
// {
// switch(m_state)
// {
// case 0:
// // insert sample into ring-buffer
// m_samples[m_ptr][0] = sample->real();
// m_samples[m_ptr][1] = sample->imag();
//
// // advance write-pointer
// m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
//
// // next state
// m_state = 1;
//
// // tell caller we don't have a new sample
// return false;
//
// default:
// // insert sample into ring-buffer
// m_samples[m_ptr][0] = -sample->real();
// m_samples[m_ptr][1] = sample->imag();
//
// // save result
// doFIR(sample);
//
// // advance write-pointer
// m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
//
// // next state
// m_state = 0;
//
// // tell caller we have a new sample
// return true;
// }
// }
// downsample by 2, return lower half of original spectrum
bool workDecimateLowerHalf(Sample* sample)
{
switch(m_state)
{
case 0:
// insert sample into ring-buffer
m_samples[m_ptr][0] = -sample->imag();
m_samples[m_ptr][1] = sample->real();
// advance write-pointer
m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
case 1:
// insert sample into ring-buffer
m_samples[m_ptr][0] = -sample->real();
m_samples[m_ptr][1] = -sample->imag();
// save result
doFIR(sample);
// advance write-pointer
m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
// next state
m_state = 2;
// tell caller we have a new sample
return true;
case 2:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sample->imag();
m_samples[m_ptr][1] = -sample->real();
// advance write-pointer
m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
// next state
m_state = 3;
// tell caller we don't have a new sample
return false;
default:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sample->real();
m_samples[m_ptr][1] = sample->imag();
// save result
doFIR(sample);
// advance write-pointer
m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
// upsample by 2, from lower half of original spectrum
bool workInterpolateLowerHalfZeroStuffing(Sample* sampleIn, Sample *sampleOut)
{
Sample s;
switch(m_state)
{
case 0:
// insert sample into ring-buffer
m_samples[m_ptr][0] = 0;
m_samples[m_ptr][1] = 0;
// save result
doFIR(&s);
sampleOut->setReal(s.imag());
sampleOut->setImag(-s.real());
// advance write-pointer
m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
// next state
m_state = 1;
// tell caller we didn't consume the sample
return false;
case 1:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
// save result
doFIR(&s);
sampleOut->setReal(-s.real());
sampleOut->setImag(-s.imag());
// advance write-pointer
m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
// next state
m_state = 2;
// tell caller we consumed the sample
return true;
case 2:
// insert sample into ring-buffer
m_samples[m_ptr][0] = 0;
m_samples[m_ptr][1] = 0;
// save result
doFIR(&s);
sampleOut->setReal(-s.imag());
sampleOut->setImag(s.real());
// advance write-pointer
m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
// next state
m_state = 3;
// tell caller we didn't consume the sample
return false;
default:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
// save result
doFIR(&s);
sampleOut->setReal(s.real());
sampleOut->setImag(s.imag());
// advance write-pointer
m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
}
}
/** Optimized upsampler by 2 not calculating FIR with inserted null samples */
bool workInterpolateLowerHalf(Sample* sampleIn, Sample *sampleOut)
{
Sample s;
switch(m_state)
{
case 0:
// return the middle peak
sampleOut->setReal(m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][1]); // imag
sampleOut->setImag(-m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][0]); // - real
m_state = 1; // next state
return false; // tell caller we didn't consume the sample
case 1:
// calculate with non null samples
doInterpolateFIR(&s);
sampleOut->setReal(-s.real());
sampleOut->setImag(-s.imag());
// insert sample into ring double buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][0] = sampleIn->real();
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][1] = sampleIn->imag();
// advance pointer
if (m_ptr < (HBFIRFilterTraits<HBFilterOrder>::hbOrder/2) - 1) {
m_ptr++;
} else {
m_ptr = 0;
}
m_state = 2; // next state
return true; // tell caller we consumed the sample
case 2:
// return the middle peak
sampleOut->setReal(-m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][1]); // - imag
sampleOut->setImag(m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][0]); // real
m_state = 3; // next state
return false; // tell caller we didn't consume the sample
default:
// calculate with non null samples
doInterpolateFIR(&s);
sampleOut->setReal(s.real());
sampleOut->setImag(s.imag());
// insert sample into ring double buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][0] = sampleIn->real();
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][1] = sampleIn->imag();
// advance pointer
if (m_ptr < (HBFIRFilterTraits<HBFilterOrder>::hbOrder/2) - 1) {
m_ptr++;
} else {
m_ptr = 0;
}
m_state = 0; // next state
return true; // tell caller we consumed the sample
}
}
// downsample by 2, return upper half of original spectrum
bool workDecimateUpperHalf(Sample* sample)
{
switch(m_state)
{
case 0:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sample->imag();
m_samples[m_ptr][1] = -sample->real();
// advance write-pointer
m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
case 1:
// insert sample into ring-buffer
m_samples[m_ptr][0] = -sample->real();
m_samples[m_ptr][1] = -sample->imag();
// save result
doFIR(sample);
// advance write-pointer
m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
// next state
m_state = 2;
// tell caller we have a new sample
return true;
case 2:
// insert sample into ring-buffer
m_samples[m_ptr][0] = -sample->imag();
m_samples[m_ptr][1] = sample->real();
// advance write-pointer
m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
// next state
m_state = 3;
// tell caller we don't have a new sample
return false;
default:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sample->real();
m_samples[m_ptr][1] = sample->imag();
// save result
doFIR(sample);
// advance write-pointer
m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
// upsample by 2, move original spectrum to upper half
bool workInterpolateUpperHalfZeroStuffing(Sample* sampleIn, Sample *sampleOut)
{
Sample s;
switch(m_state)
{
case 0:
// insert sample into ring-buffer
m_samples[m_ptr][0] = 0;
m_samples[m_ptr][1] = 0;
// save result
doFIR(&s);
sampleOut->setReal(-s.imag());
sampleOut->setImag(s.real());
// advance write-pointer
m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
// next state
m_state = 1;
// tell caller we didn't consume the sample
return false;
case 1:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
// save result
doFIR(&s);
sampleOut->setReal(-s.real());
sampleOut->setImag(-s.imag());
// advance write-pointer
m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
// next state
m_state = 2;
// tell caller we consumed the sample
return true;
case 2:
// insert sample into ring-buffer
m_samples[m_ptr][0] = 0;
m_samples[m_ptr][1] = 0;
// save result
doFIR(&s);
sampleOut->setReal(s.imag());
sampleOut->setImag(-s.real());
// advance write-pointer
m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
// next state
m_state = 3;
// tell caller we didn't consume the sample
return false;
default:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
// save result
doFIR(&s);
sampleOut->setReal(s.real());
sampleOut->setImag(s.imag());
// advance write-pointer
m_ptr = (m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
}
}
/** Optimized upsampler by 2 not calculating FIR with inserted null samples */
bool workInterpolateUpperHalf(Sample* sampleIn, Sample *sampleOut)
{
Sample s;
switch(m_state)
{
case 0:
// return the middle peak
sampleOut->setReal(-m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][1]); // - imag
sampleOut->setImag(m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][0]); // + real
m_state = 1; // next state
return false; // tell caller we didn't consume the sample
case 1:
// calculate with non null samples
doInterpolateFIR(&s);
sampleOut->setReal(-s.real());
sampleOut->setImag(-s.imag());
// insert sample into ring double buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][0] = sampleIn->real();
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][1] = sampleIn->imag();
// advance pointer
if (m_ptr < (HBFIRFilterTraits<HBFilterOrder>::hbOrder/2) - 1) {
m_ptr++;
} else {
m_ptr = 0;
}
m_state = 2; // next state
return true; // tell caller we consumed the sample
case 2:
// return the middle peak
sampleOut->setReal(m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][1]); // + imag
sampleOut->setImag(-m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][0]); // - real
m_state = 3; // next state
return false; // tell caller we didn't consume the sample
default:
// calculate with non null samples
doInterpolateFIR(&s);
sampleOut->setReal(s.real());
sampleOut->setImag(s.imag());
// insert sample into ring double buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][0] = sampleIn->real();
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][1] = sampleIn->imag();
// advance pointer
if (m_ptr < (HBFIRFilterTraits<HBFilterOrder>::hbOrder/2) - 1) {
m_ptr++;
} else {
m_ptr = 0;
}
m_state = 0; // next state
return true; // tell caller we consumed the sample
}
}
void myDecimate(const Sample* sample1, Sample* sample2)
{
m_samples[m_ptr][0] = sample1->real();
m_samples[m_ptr][1] = sample1->imag();
m_ptr = HBFIRFilterTraits<HBFilterOrder>::hbMod[m_ptr + 2 - 1];
m_samples[m_ptr][0] = sample2->real();
m_samples[m_ptr][1] = sample2->imag();
doFIR(sample2);
m_ptr = HBFIRFilterTraits<HBFilterOrder>::hbMod[m_ptr + 2 - 1];
}
void myDecimate(qint32 x1, qint32 y1, qint32 *x2, qint32 *y2)
{
m_samples[m_ptr][0] = x1;
m_samples[m_ptr][1] = y1;
m_ptr = HBFIRFilterTraits<HBFilterOrder>::hbMod[m_ptr + 2 - 1];
m_samples[m_ptr][0] = *x2;
m_samples[m_ptr][1] = *y2;
doFIR(x2, y2);
m_ptr = HBFIRFilterTraits<HBFilterOrder>::hbMod[m_ptr + 2 - 1];
}
/** Simple zero stuffing and filter */
void myInterpolateZeroStuffing(Sample* sample1, Sample* sample2)
{
m_samples[m_ptr][0] = sample1->real();
m_samples[m_ptr][1] = sample1->imag();
doFIR(sample1);
m_ptr = HBFIRFilterTraits<HBFilterOrder>::hbMod[m_ptr + 2 - 1];
m_samples[m_ptr][0] = 0;
m_samples[m_ptr][1] = 0;
doFIR(sample2);
m_ptr = HBFIRFilterTraits<HBFilterOrder>::hbMod[m_ptr + 2 - 1];
}
/** Simple zero stuffing and filter */
void myInterpolateZeroStuffing(qint32 *x1, qint32 *y1, qint32 *x2, qint32 *y2)
{
m_samples[m_ptr][0] = *x1;
m_samples[m_ptr][1] = *y1;
doFIR(x1, y1);
m_ptr = HBFIRFilterTraits<HBFilterOrder>::hbMod[m_ptr + 2 - 1];
m_samples[m_ptr][0] = 0;
m_samples[m_ptr][1] = 0;
doFIR(x2, y2);
m_ptr = HBFIRFilterTraits<HBFilterOrder>::hbMod[m_ptr + 2 - 1];
}
/** Optimized upsampler by 2 not calculating FIR with inserted null samples */
void myInterpolate(qint32 *x1, qint32 *y1, qint32 *x2, qint32 *y2)
{
// insert sample into ring double buffer
m_samples[m_ptr][0] = *x1;
m_samples[m_ptr][1] = *y1;
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][0] = *x1;
m_samples[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][1] = *y1;
// advance pointer
if (m_ptr < (HBFIRFilterTraits<HBFilterOrder>::hbOrder/2) - 1) {
m_ptr++;
} else {
m_ptr = 0;
}
// first output sample calculated with the middle peak
*x1 = m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][0];
*y1 = m_samples[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][1];
// second sample calculated with the filter
doInterpolateFIR(x2, y2);
}
void myInterpolateInf(qint32 *x1, qint32 *y1, qint32 *x2, qint32 *y2, qint32 *x3, qint32 *y3, qint32 *x4, qint32 *y4)
{
myInterpolate(x1, y1, x2, y2);
myInterpolate(x3, y3, x4, y4);
// rotation
qint32 x;
x = *x1;
*x1 = *y1;
*y1 = -x;
*x2 = -*x2;
*y2 = -*y2;
x = *x3;
*x3 = -*y3;
*y3 = x;
}
void myInterpolateSup(qint32 *x1, qint32 *y1, qint32 *x2, qint32 *y2, qint32 *x3, qint32 *y3, qint32 *x4, qint32 *y4)
{
myInterpolate(x1, y1, x2, y2);
myInterpolate(x3, y3, x4, y4);
// rotation
qint32 x;
x = *x1;
*x1 = -*y1;
*y1 = x;
*x2 = -*x2;
*y2 = -*y2;
x = *x3;
*x3 = *y3;
*y3 = -x;
}
protected:
AccuType m_samples[HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1][2]; // Valgrind optim (from qint16)
qint16 m_ptr;
int m_state;
void doFIR(Sample* sample)
{
// init read-pointer
int a = HBFIRFilterTraits<HBFilterOrder>::hbMod[m_ptr + 2 + 1]; // 0 + 1
int b = HBFIRFilterTraits<HBFilterOrder>::hbMod[m_ptr + 2 - 2]; //-1 - 1
// go through samples in buffer
AccuType iAcc = 0;
AccuType qAcc = 0;
for (int i = 0; i < HBFIRFilterTraits<HBFilterOrder>::hbOrder / 4; i++)
{
// do multiply-accumulate
//qint32 iTmp = m_samples[a][0] + m_samples[b][0]; // Valgrind optim
//qint32 qTmp = m_samples[a][1] + m_samples[b][1]; // Valgrind optim
iAcc += (m_samples[a][0] + m_samples[b][0]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
qAcc += (m_samples[a][1] + m_samples[b][1]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
// update read-pointer
a = HBFIRFilterTraits<HBFilterOrder>::hbMod[a + 2 + 2];
b = HBFIRFilterTraits<HBFilterOrder>::hbMod[b + 2 - 2];
}
a = HBFIRFilterTraits<HBFilterOrder>::hbMod[a + 2 - 1];
iAcc += ((qint32)m_samples[a][0] + 1) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
qAcc += ((qint32)m_samples[a][1] + 1) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
sample->setReal(iAcc >> (HBFIRFilterTraits<HBFilterOrder>::hbShift -1));
sample->setImag(qAcc >> (HBFIRFilterTraits<HBFilterOrder>::hbShift -1));
}
void doInterpolateFIR(Sample* sample)
{
qint16 a = m_ptr;
qint16 b = m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder / 2) - 1;
// go through samples in buffer
AccuType iAcc = 0;
AccuType qAcc = 0;
for (int i = 0; i < HBFIRFilterTraits<HBFilterOrder>::hbOrder / 4; i++)
{
iAcc += (m_samples[a][0] + m_samples[b][0]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
qAcc += (m_samples[a][1] + m_samples[b][1]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
a++;
b--;
}
sample->setReal(iAcc >> (HBFIRFilterTraits<HBFilterOrder>::hbShift -1));
sample->setImag(qAcc >> (HBFIRFilterTraits<HBFilterOrder>::hbShift -1));
}
void doInterpolateFIR(qint32 *x, qint32 *y)
{
qint16 a = m_ptr;
qint16 b = m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder / 2) - 1;
// go through samples in buffer
AccuType iAcc = 0;
AccuType qAcc = 0;
for (int i = 0; i < HBFIRFilterTraits<HBFilterOrder>::hbOrder / 4; i++)
{
iAcc += (m_samples[a][0] + m_samples[b][0]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
qAcc += (m_samples[a][1] + m_samples[b][1]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
a++;
b--;
}
*x = iAcc >> (HBFIRFilterTraits<HBFilterOrder>::hbShift -1);
*y = qAcc >> (HBFIRFilterTraits<HBFilterOrder>::hbShift -1);
}
void doFIR(qint32 *x, qint32 *y)
{
// Coefficents. This is a sinc function:
// Half of the half of coefficients are stored because:
// - half of the coefficients are 0
// - there is a symmertry around the central 0.5 coefficient (not stored either)
// There are actually order+1 coefficients
// init read-pointer
int a = HBFIRFilterTraits<HBFilterOrder>::hbMod[m_ptr + 2 + 1]; // 0 + 1
int b = HBFIRFilterTraits<HBFilterOrder>::hbMod[m_ptr + 2 - 2]; //-1 - 1
// go through samples in buffer
AccuType iAcc = 0;
AccuType qAcc = 0;
for (int i = 0; i < HBFIRFilterTraits<HBFilterOrder>::hbOrder / 4; i++)
{
// do multiply-accumulate
//qint32 iTmp = m_samples[a][0] + m_samples[b][0]; // Valgrind optim
//qint32 qTmp = m_samples[a][1] + m_samples[b][1]; // Valgrind optim
iAcc += (m_samples[a][0] + m_samples[b][0]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
qAcc += (m_samples[a][1] + m_samples[b][1]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
// update read-pointer
a = HBFIRFilterTraits<HBFilterOrder>::hbMod[a + 2 + 2];
b = HBFIRFilterTraits<HBFilterOrder>::hbMod[b + 2 - 2];
}
a = HBFIRFilterTraits<HBFilterOrder>::hbMod[a + 2 - 1];
iAcc += ((qint32)m_samples[a][0] + 1) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
qAcc += ((qint32)m_samples[a][1] + 1) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
*x = iAcc >> (HBFIRFilterTraits<HBFilterOrder>::hbShift -1); // HB_SHIFT incorrect do not loose the gained bit
*y = qAcc >> (HBFIRFilterTraits<HBFilterOrder>::hbShift -1);
}
};
//template<uint32_t HBFilterOrder>
//IntHalfbandFilter<HBFilterOrder>::IntHalfbandFilter()
//{
// for (int i = 0; i < HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1; i++)
// {
// m_samples[i][0] = 0;
// m_samples[i][1] = 0;
// }
//
// m_ptr = 0;
// m_state = 0;
//}
#endif // INCLUDE_INTHALFBANDFILTER_H