sdrangel/plugins/channelrx/demoddatv/leansdr/framework.h

476 lines
9.3 KiB
C++

#ifndef LEANSDR_FRAMEWORK_H
#define LEANSDR_FRAMEWORK_H
#include <cstddef>
#include <algorithm>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
namespace leansdr
{
inline void fatal(const char *s)
{
perror(s);
}
inline void fail(const char *f, const char *s)
{
fprintf(stderr, "leansdr::%s: %s\n", f, s);
}
//////////////////////////////////////////////////////////////////////
// DSP framework
//////////////////////////////////////////////////////////////////////
// [pipebuf] is a FIFO buffer with multiple readers.
// [pipewriter] is a client-side hook for writing into a [pipebuf].
// [pipereader] is a client-side hook reading from a [pipebuf].
// [runnable] is anything that moves data between [pipebufs].
// [scheduler] is a global context which invokes [runnables] until fixpoint.
static const int MAX_PIPES = 64;
static const int MAX_RUNNABLES = 64;
static const int MAX_READERS = 8;
struct pipebuf_common
{
virtual int sizeofT()
{
return 0;
}
virtual long long hash()
{
return 0;
}
virtual void dump(std::size_t *total_bufs)
{
(void) total_bufs;
}
pipebuf_common(const char *_name) :
name(_name)
{
}
virtual ~pipebuf_common()
{
}
const char *name;
};
struct runnable_common
{
runnable_common(const char *_name) :
name(_name)
{
}
virtual ~runnable_common()
{
}
virtual void run()
{
}
virtual void shutdown()
{
}
#ifdef DEBUG
~runnable_common()
{ fprintf(stderr, "Deallocating %s !\n", name);}
#endif
const char *name;
};
struct window_placement
{
const char *name; // NULL to terminate
int x, y, w, h;
};
struct scheduler
{
pipebuf_common *pipes[MAX_PIPES];
int npipes;
runnable_common *runnables[MAX_RUNNABLES];
int nrunnables;
window_placement *windows;
bool verbose, debug;
scheduler() :
npipes(0), nrunnables(0), windows(nullptr), verbose(false), debug(false)
{
std::fill(pipes, pipes + MAX_PIPES, nullptr);
std::fill(runnables, runnables + MAX_RUNNABLES, nullptr);
}
void add_pipe(pipebuf_common *p)
{
if (npipes == MAX_PIPES)
{
fail("scheduler::add_pipe", "MAX_PIPES");
return;
}
pipes[npipes++] = p;
}
void add_runnable(runnable_common *r)
{
if (nrunnables == MAX_RUNNABLES)
{
fail("scheduler::add_runnable", "MAX_RUNNABLES");
}
runnables[nrunnables++] = r;
}
void step()
{
for (int i = 0; i < nrunnables; ++i) {
runnables[i]->run();
}
}
void run()
{
unsigned long long prev_hash = 0;
while (1)
{
step();
unsigned long long h = hash();
if (h == prev_hash) {
break;
}
prev_hash = h;
}
}
void shutdown()
{
for (int i = 0; i < nrunnables; ++i) {
runnables[i]->shutdown();
}
}
unsigned long long hash()
{
unsigned long long h = 0;
for (int i = 0; i < npipes; ++i) {
h += (1 + i) * pipes[i]->hash();
}
return h;
}
void dump()
{
fprintf(stderr, "\n");
std::size_t total_bufs = 0;
for (int i = 0; i < npipes; ++i) {
pipes[i]->dump(&total_bufs);
}
fprintf(stderr, "leansdr::scheduler::dump Total buffer memory: %ld KiB\n", (unsigned long) total_bufs / 1024);
}
};
struct runnable: runnable_common
{
runnable(scheduler *_sch, const char *name) :
runnable_common(name), sch(_sch)
{
sch->add_runnable(this);
}
protected:
scheduler *sch;
};
template<typename T>
struct pipebuf: pipebuf_common
{
T *buf;
T *rds[MAX_READERS];
int nrd;
T *wr;
T *end;
int sizeofT()
{
return sizeof(T);
}
pipebuf(scheduler *sch, const char *name, unsigned long size) :
pipebuf_common(name), buf(new T[size]), nrd(0), wr(buf), end(
buf + size), min_write(1), total_written(0), total_read(0)
{
sch->add_pipe(this);
}
int add_reader()
{
if (nrd == MAX_READERS)
{
fail("pipebuf::add_reader", "too many readers");
return nrd;
}
rds[nrd] = wr;
return nrd++;
}
void pack()
{
T *rd = wr;
for (int i = 0; i < nrd; ++i)
{
if (rds[i] < rd) {
rd = rds[i];
}
}
memmove(buf, rd, (wr - rd) * sizeof(T));
wr -= rd - buf;
for (int i = 0; i < nrd; ++i) {
rds[i] -= rd - buf;
}
}
long long hash()
{
return total_written + total_read;
}
void dump(std::size_t *total_bufs)
{
if (total_written < 10000) {
fprintf(stderr, "leansdr::pipebuf::dump: .%-16s : %4ld/%4ld", name, total_read, total_written);
} else if (total_written < 1000000) {
fprintf(stderr, "leansdr::pipebuf::dump: .%-16s : %3ldk/%3ldk", name, total_read / 1000, total_written / 1000);
} else {
fprintf(stderr, "leansdr::pipebuf::dump: .%-16s : %3ldM/%3ldM", name, total_read / 1000000, total_written / 1000000);
}
*total_bufs += (end - buf) * sizeof(T);
unsigned long nw = end - wr;
fprintf(stderr, "leansdr::pipebuf: %6ld writable %c,", nw, (nw < min_write) ? '!' : ' ');
T *rd = wr;
for (int j = 0; j < nrd; ++j)
{
if (rds[j] < rd) {
rd = rds[j];
}
}
fprintf(stderr, "leansdr::pipebuf::dump: %6d unread (", (int) (wr - rd));
for (int j = 0; j < nrd; ++j) {
fprintf(stderr, "leansdr::pipebuf: %d", (int) (wr - rds[j]));
}
fprintf(stderr, "leansdr::pipebuf::dump: )\n");
}
unsigned long min_write;
unsigned long total_written, total_read;
#ifdef DEBUG
~pipebuf()
{ fprintf(stderr, "Deallocating %s !\n", name);}
#endif
};
template<typename T>
struct pipewriter
{
pipebuf<T> &buf;
pipewriter(pipebuf<T> &_buf, unsigned long min_write = 1) :
buf(_buf)
{
if (min_write > buf.min_write) {
buf.min_write = min_write;
}
}
/** Return number of items writable at this->wr, 0 if full. */
unsigned long writable()
{
if (buf.end < buf.wr)
{
fprintf(stderr, "leansdr::pipewriter::writable: overflow in %s buffer\n", buf.name);
return 0;
}
unsigned long delta = buf.end - buf.wr;
if (delta < buf.min_write) {
buf.pack();
}
return delta;
}
T *wr()
{
return buf.wr;
}
void written(unsigned long n)
{
if (buf.wr + n > buf.end)
{
fprintf(stderr, "leansdr::pipewriter::written: overflow in %s buffer\n", buf.name);
return;
}
buf.wr += n;
buf.total_written += n;
}
void write(const T &e)
{
*wr() = e;
written(1);
}
};
// Convenience functions for working with optional pipes
template<typename T>
pipewriter<T> *opt_writer(pipebuf<T> *buf)
{
return buf ? new pipewriter<T>(*buf) : NULL;
}
template<typename T>
bool opt_writable(pipewriter<T> *p, unsigned int n = 1)
{
return (p == NULL) || p->writable() >= n;
}
template<typename T>
void opt_write(pipewriter<T> *p, T val)
{
if (p) {
p->write(val);
}
}
template<typename T>
struct pipereader
{
pipebuf<T> &buf;
int id;
pipereader(pipebuf<T> &_buf) :
buf(_buf), id(_buf.add_reader())
{
}
unsigned long readable()
{
return buf.wr - buf.rds[id];
}
T *rd()
{
return buf.rds[id];
}
void read(unsigned long n)
{
if (buf.rds[id] + n > buf.wr)
{
fprintf(stderr, "leansdr::pipereader::read: underflow in %s buffer\n", buf.name);
return;
}
buf.rds[id] += n;
buf.total_read += n;
}
};
// Math functions for templates
template<typename T> T gen_sqrt(T x);
inline float gen_sqrt(float x)
{
return sqrtf(x);
}
inline unsigned int gen_sqrt(unsigned int x)
{
return sqrtl(x);
}
inline long double gen_sqrt(long double x)
{
return sqrtl(x);
}
template<typename T> T gen_abs(T x);
inline float gen_abs(float x)
{
return fabsf(x);
}
inline int gen_abs(int x)
{
return abs(x);
}
inline long int gen_abs(long int x)
{
return labs(x);
}
template<typename T> T gen_hypot(T x, T y);
inline float gen_hypot(float x, float y)
{
return hypotf(x, y);
}
inline long double gen_hypot(long double x, long double y)
{
return hypotl(x, y);
}
template<typename T> T gen_atan2(T y, T x);
inline float gen_atan2(float y, float x)
{
return atan2f(y, x);
}
inline long double gen_atan2(long double y, long double x)
{
return atan2l(y, x);
}
template<typename T>
T min(const T &x, const T &y)
{
return (x < y) ? x : y;
}
template<typename T>
T max(const T &x, const T &y)
{
return (x < y) ? y : x;
}
// Abreviations for integer types
typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned long u32;
typedef signed char s8;
typedef signed short s16;
typedef signed long s32;
} // namespace
#endif // LEANSDR_FRAMEWORK_H