sdrangel/qrtplib/rtpudpv4transmitternobind.cpp

1837 lines
47 KiB
C++

/*
This file is a part of JRTPLIB
Copyright (c) 1999-2017 Jori Liesenborgs
Contact: jori.liesenborgs@gmail.com
This library was developed at the Expertise Centre for Digital Media
(http://www.edm.uhasselt.be), a research center of the Hasselt University
(http://www.uhasselt.be). The library is based upon work done for
my thesis at the School for Knowledge Technology (Belgium/The Netherlands).
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.
*/
#include "rtpudpv4transmitternobind.h"
#include "rtprawpacket.h"
#include "rtpipv4address.h"
#include "rtptimeutilities.h"
#include "rtpdefines.h"
#include "rtpstructs.h"
#include "rtpsocketutilinternal.h"
#include "rtpinternalutils.h"
#include "rtpselect.h"
#include <stdio.h>
#include <assert.h>
#include <vector>
#include <iostream>
using namespace std;
#define RTPUDPV4TRANSNOBIND_MAXPACKSIZE 65535
#define RTPUDPV4TRANSNOBIND_IFREQBUFSIZE 8192
#define RTPUDPV4TRANSNOBIND_IS_MCASTADDR(x) (((x)&0xF0000000) == 0xE0000000)
#define RTPUDPV4TRANSNOBIND_MCASTMEMBERSHIP(socket,type,mcastip,status) {\
struct ip_mreq mreq;\
\
mreq.imr_multiaddr.s_addr = htonl(mcastip);\
mreq.imr_interface.s_addr = htonl(mcastifaceIP);\
status = setsockopt(socket,IPPROTO_IP,type,(const char *)&mreq,sizeof(struct ip_mreq));\
}
#define CLOSESOCKETS do { \
if (closesocketswhendone) \
{\
if (rtpsock != rtcpsock) \
RTPCLOSE(rtcpsock); \
RTPCLOSE(rtpsock); \
} \
} while(0)
namespace qrtplib
{
RTPUDPv4TransmitterNoBind::RTPUDPv4TransmitterNoBind() :
init(false), created(false), waitingfordata(false), rtpsock(-1), rtcpsock(-1), mcastifaceIP(0), m_rtpPort(0), m_rtcpPort(0), multicastTTL(0), receivemode(AcceptAll), localhostname(
0), localhostnamelength(0), supportsmulticasting(false), maxpacksize(0), closesocketswhendone(false), m_pAbortDesc(0)
{
}
RTPUDPv4TransmitterNoBind::~RTPUDPv4TransmitterNoBind()
{
Destroy();
}
int RTPUDPv4TransmitterNoBind::Init(bool tsafe)
{
if (init)
return ERR_RTP_UDPV4TRANS_ALREADYINIT;
if (tsafe)
return ERR_RTP_NOTHREADSUPPORT;
init = true;
return 0;
}
int RTPUDPv4TransmitterNoBind::GetIPv4SocketPort(SocketType s, uint16_t *pPort)
{
assert(pPort != 0);
struct sockaddr_in addr;
memset(&addr, 0, sizeof(struct sockaddr_in));
RTPSOCKLENTYPE size = sizeof(struct sockaddr_in);
if (getsockname(s, (struct sockaddr*) &addr, &size) != 0)
return ERR_RTP_UDPV4TRANS_CANTGETSOCKETPORT;
if (addr.sin_family != AF_INET)
return ERR_RTP_UDPV4TRANS_NOTANIPV4SOCKET;
uint16_t port = ntohs(addr.sin_port);
if (port == 0)
return ERR_RTP_UDPV4TRANS_SOCKETPORTNOTSET;
int type = 0;
RTPSOCKLENTYPE length = sizeof(type);
if (getsockopt(s, SOL_SOCKET, SO_TYPE, (char*) &type, &length) != 0)
return ERR_RTP_UDPV4TRANS_CANTGETSOCKETTYPE;
if (type != SOCK_DGRAM)
return ERR_RTP_UDPV4TRANS_INVALIDSOCKETTYPE;
*pPort = port;
return 0;
}
int RTPUDPv4TransmitterNoBind::GetAutoSockets(uint32_t bindIP, bool allowOdd, bool rtcpMux, SocketType *pRtpSock, SocketType *pRtcpSock, uint16_t *pRtpPort, uint16_t *pRtcpPort)
{
const int maxAttempts = 1024;
int attempts = 0;
vector<SocketType> toClose;
while (attempts++ < maxAttempts)
{
SocketType sock = socket(PF_INET, SOCK_DGRAM, 0);
if (sock == RTPSOCKERR)
{
for (std::size_t i = 0; i < toClose.size(); i++)
RTPCLOSE(toClose[i]);
return ERR_RTP_UDPV4TRANS_CANTCREATESOCKET;
}
// First we get an automatically chosen port
struct sockaddr_in addr;
memset(&addr, 0, sizeof(struct sockaddr_in));
addr.sin_family = AF_INET;
addr.sin_port = 0;
addr.sin_addr.s_addr = htonl(bindIP);
if (bind(sock, (struct sockaddr *) &addr, sizeof(struct sockaddr_in)) != 0)
{
RTPCLOSE(sock);
for (std::size_t i = 0; i < toClose.size(); i++)
RTPCLOSE(toClose[i]);
return ERR_RTP_UDPV4TRANS_CANTGETVALIDSOCKET;
}
uint16_t basePort = 0;
int status = GetIPv4SocketPort(sock, &basePort);
if (status < 0)
{
RTPCLOSE(sock);
for (std::size_t i = 0; i < toClose.size(); i++)
RTPCLOSE(toClose[i]);
return status;
}
if (rtcpMux) // only need one socket
{
if (basePort % 2 == 0 || allowOdd)
{
*pRtpSock = sock;
*pRtcpSock = sock;
*pRtpPort = basePort;
*pRtcpPort = basePort;
for (std::size_t i = 0; i < toClose.size(); i++)
RTPCLOSE(toClose[i]);
return 0;
}
else
toClose.push_back(sock);
}
else
{
SocketType sock2 = socket(PF_INET, SOCK_DGRAM, 0);
if (sock2 == RTPSOCKERR)
{
RTPCLOSE(sock);
for (std::size_t i = 0; i < toClose.size(); i++)
RTPCLOSE(toClose[i]);
return ERR_RTP_UDPV4TRANS_CANTCREATESOCKET;
}
// Try the next port or the previous port
uint16_t secondPort = basePort;
bool possiblyValid = false;
if (basePort % 2 == 0)
{
secondPort++;
possiblyValid = true;
}
else if (basePort > 1) // avoid landing on port 0
{
secondPort--;
possiblyValid = true;
}
if (possiblyValid)
{
memset(&addr, 0, sizeof(struct sockaddr_in));
addr.sin_family = AF_INET;
addr.sin_port = htons(secondPort);
addr.sin_addr.s_addr = htonl(bindIP);
if (bind(sock2, (struct sockaddr *) &addr, sizeof(struct sockaddr_in)) == 0)
{
// In this case, we have two consecutive port numbers, the lower of
// which is even
if (basePort < secondPort)
{
*pRtpSock = sock;
*pRtcpSock = sock2;
*pRtpPort = basePort;
*pRtcpPort = secondPort;
}
else
{
*pRtpSock = sock2;
*pRtcpSock = sock;
*pRtpPort = secondPort;
*pRtcpPort = basePort;
}
for (std::size_t i = 0; i < toClose.size(); i++)
RTPCLOSE(toClose[i]);
return 0;
}
}
toClose.push_back(sock);
toClose.push_back(sock2);
}
}
for (std::size_t i = 0; i < toClose.size(); i++)
RTPCLOSE(toClose[i]);
return ERR_RTP_UDPV4TRANS_TOOMANYATTEMPTSCHOOSINGSOCKET;
}
int RTPUDPv4TransmitterNoBind::Create(std::size_t maximumpacketsize, const RTPTransmissionParams *transparams)
{
const RTPUDPv4TransmissionNoBindParams *params, defaultparams;
// struct sockaddr_in addr;
RTPSOCKLENTYPE size;
int status;
if (!init)
return ERR_RTP_UDPV4TRANS_NOTINIT;
if (created)
{
return ERR_RTP_UDPV4TRANS_ALREADYCREATED;
}
// Obtain transmission parameters
if (transparams == 0)
params = &defaultparams;
else
{
if (transparams->GetTransmissionProtocol() != RTPTransmitter::IPv4UDPProto)
{
return ERR_RTP_UDPV4TRANS_ILLEGALPARAMETERS;
}
params = (const RTPUDPv4TransmissionNoBindParams *) transparams;
}
if (params->GetUseExistingSockets(rtpsock, rtcpsock))
{
closesocketswhendone = false;
// Determine the port numbers. They are set to 0 if the sockets are not bound.
GetIPv4SocketPort(rtpsock, &m_rtpPort);
GetIPv4SocketPort(rtcpsock, &m_rtcpPort);
}
else
{
closesocketswhendone = true;
if (params->GetPortbase() == 0)
{
int status = GetAutoSockets(params->GetBindIP(), params->GetAllowOddPortbase(), params->GetRTCPMultiplexing(), &rtpsock, &rtcpsock, &m_rtpPort, &m_rtcpPort);
if (status < 0)
{
return status;
}
}
else
{
// Check if portbase is even (if necessary)
if (!params->GetAllowOddPortbase() && params->GetPortbase() % 2 != 0)
{
return ERR_RTP_UDPV4TRANS_PORTBASENOTEVEN;
}
// create sockets
rtpsock = socket(PF_INET, SOCK_DGRAM, 0);
if (rtpsock == RTPSOCKERR)
{
return ERR_RTP_UDPV4TRANS_CANTCREATESOCKET;
}
// If we're multiplexing, we're just going to set the RTCP socket to equal the RTP socket
if (params->GetRTCPMultiplexing())
rtcpsock = rtpsock;
else
{
rtcpsock = socket(PF_INET, SOCK_DGRAM, 0);
if (rtcpsock == RTPSOCKERR)
{
RTPCLOSE(rtpsock);
return ERR_RTP_UDPV4TRANS_CANTCREATESOCKET;
}
}
}
// set socket buffer sizes
size = params->GetRTPReceiveBuffer();
if (setsockopt(rtpsock, SOL_SOCKET, SO_RCVBUF, (const char *) &size, sizeof(int)) != 0)
{
CLOSESOCKETS;
return ERR_RTP_UDPV4TRANS_CANTSETRTPRECEIVEBUF;
}
size = params->GetRTPSendBuffer();
if (setsockopt(rtpsock, SOL_SOCKET, SO_SNDBUF, (const char *) &size, sizeof(int)) != 0)
{
CLOSESOCKETS;
return ERR_RTP_UDPV4TRANS_CANTSETRTPTRANSMITBUF;
}
if (rtpsock != rtcpsock) // no need to set RTCP flags when multiplexing
{
size = params->GetRTCPReceiveBuffer();
if (setsockopt(rtcpsock, SOL_SOCKET, SO_RCVBUF, (const char *) &size, sizeof(int)) != 0)
{
CLOSESOCKETS;
return ERR_RTP_UDPV4TRANS_CANTSETRTCPRECEIVEBUF;
}
size = params->GetRTCPSendBuffer();
if (setsockopt(rtcpsock, SOL_SOCKET, SO_SNDBUF, (const char *) &size, sizeof(int)) != 0)
{
CLOSESOCKETS;
return ERR_RTP_UDPV4TRANS_CANTSETRTCPTRANSMITBUF;
}
}
}
// Try to obtain local IP addresses
localIPs = params->GetLocalIPList();
if (localIPs.empty()) // User did not provide list of local IP addresses, calculate them
{
int status;
if ((status = CreateLocalIPList()) < 0)
{
CLOSESOCKETS;
return status;
}
}
#ifdef RTP_SUPPORT_IPV4MULTICAST
if (SetMulticastTTL(params->GetMulticastTTL()))
supportsmulticasting = true;
else
supportsmulticasting = false;
#else // no multicast support enabled
supportsmulticasting = false;
#endif // RTP_SUPPORT_IPV4MULTICAST
if (maximumpacketsize > RTPUDPV4TRANSNOBIND_MAXPACKSIZE)
{
CLOSESOCKETS;
return ERR_RTP_UDPV4TRANS_SPECIFIEDSIZETOOBIG;
}
if (!params->GetCreatedAbortDescriptors())
{
if ((status = m_abortDesc.Init()) < 0)
{
CLOSESOCKETS;
return status;
}
m_pAbortDesc = &m_abortDesc;
}
else
{
m_pAbortDesc = params->GetCreatedAbortDescriptors();
if (!m_pAbortDesc->IsInitialized())
{
CLOSESOCKETS;
return ERR_RTP_ABORTDESC_NOTINIT;
}
}
maxpacksize = maximumpacketsize;
multicastTTL = params->GetMulticastTTL();
mcastifaceIP = params->GetMulticastInterfaceIP();
receivemode = RTPTransmitter::AcceptAll;
localhostname = 0;
localhostnamelength = 0;
waitingfordata = false;
created = true;
return 0;
}
int RTPUDPv4TransmitterNoBind::BindSockets(const RTPTransmissionParams *transparams)
{
if (transparams->GetTransmissionProtocol() != RTPTransmitter::IPv4UDPProto)
{
return ERR_RTP_UDPV4TRANS_ILLEGALPARAMETERS;
}
const RTPUDPv4TransmissionNoBindParams *params = (const RTPUDPv4TransmissionNoBindParams *) transparams;
uint32_t bindIP = params->GetBindIP();
m_rtpPort = params->GetPortbase();
struct sockaddr_in addr;
memset(&addr, 0, sizeof(struct sockaddr_in));
addr.sin_family = AF_INET;
addr.sin_port = htons(params->GetPortbase());
addr.sin_addr.s_addr = htonl(bindIP);
if (bind(rtpsock, (struct sockaddr *) &addr, sizeof(struct sockaddr_in)) != 0)
{
CLOSESOCKETS;
return ERR_RTP_UDPV4TRANS_CANTBINDRTPSOCKET;
}
if (rtpsock != rtcpsock) // no need to bind same socket twice when multiplexing
{
uint16_t rtpport = params->GetPortbase();
uint16_t rtcpport = params->GetForcedRTCPPort();
if (rtcpport == 0)
{
rtcpport = rtpport;
if (rtcpport < 0xFFFF)
rtcpport++;
}
memset(&addr, 0, sizeof(struct sockaddr_in));
addr.sin_family = AF_INET;
addr.sin_port = htons(rtcpport);
addr.sin_addr.s_addr = htonl(bindIP);
if (bind(rtcpsock, (struct sockaddr *) &addr, sizeof(struct sockaddr_in)) != 0)
{
CLOSESOCKETS;
return ERR_RTP_UDPV4TRANS_CANTBINDRTCPSOCKET;
}
m_rtcpPort = rtcpport;
}
else
m_rtcpPort = m_rtpPort;
return 0;
}
void RTPUDPv4TransmitterNoBind::Destroy()
{
if (!init)
return;
if (!created)
{
;
return;
}
if (localhostname)
{
delete[] localhostname;
localhostname = 0;
localhostnamelength = 0;
}
CLOSESOCKETS;
destinations.Clear();
#ifdef RTP_SUPPORT_IPV4MULTICAST
multicastgroups.Clear();
#endif // RTP_SUPPORT_IPV4MULTICAST
FlushPackets();
ClearAcceptIgnoreInfo();
localIPs.clear();
created = false;
if (waitingfordata)
{
m_pAbortDesc->SendAbortSignal();
m_abortDesc.Destroy(); // Doesn't do anything if not initialized
// to make sure that the WaitForIncomingData function ended
}
else
m_abortDesc.Destroy(); // Doesn't do anything if not initialized
}
RTPTransmissionInfo *RTPUDPv4TransmitterNoBind::GetTransmissionInfo()
{
if (!init)
return 0;
RTPTransmissionInfo *tinf = new RTPUDPv4TransmissionNoBindInfo(localIPs, rtpsock, rtcpsock, m_rtpPort, m_rtcpPort);
return tinf;
}
void RTPUDPv4TransmitterNoBind::DeleteTransmissionInfo(RTPTransmissionInfo *i)
{
if (!init)
return;
delete i;
}
int RTPUDPv4TransmitterNoBind::GetLocalHostName(uint8_t *buffer, std::size_t *bufferlength)
{
if (!init)
return ERR_RTP_UDPV4TRANS_NOTINIT;
if (!created)
{
return ERR_RTP_UDPV4TRANS_NOTCREATED;
}
if (localhostname == 0)
{
if (localIPs.empty())
{
return ERR_RTP_UDPV4TRANS_NOLOCALIPS;
}
std::list<uint32_t>::const_iterator it;
std::list<std::string> hostnames;
for (it = localIPs.begin(); it != localIPs.end(); it++)
{
bool founddouble = false;
bool foundentry = true;
while (!founddouble && foundentry)
{
struct hostent *he;
uint8_t addr[4];
uint32_t ip = (*it);
addr[0] = (uint8_t) ((ip >> 24) & 0xFF);
addr[1] = (uint8_t) ((ip >> 16) & 0xFF);
addr[2] = (uint8_t) ((ip >> 8) & 0xFF);
addr[3] = (uint8_t) (ip & 0xFF);
he = gethostbyaddr((char *) addr, 4, AF_INET);
if (he != 0)
{
std::string hname = std::string(he->h_name);
std::list<std::string>::const_iterator it;
for (it = hostnames.begin(); !founddouble && it != hostnames.end(); it++)
if ((*it) == hname)
founddouble = true;
if (!founddouble)
hostnames.push_back(hname);
int i = 0;
while (!founddouble && he->h_aliases[i] != 0)
{
std::string hname = std::string(he->h_aliases[i]);
for (it = hostnames.begin(); !founddouble && it != hostnames.end(); it++)
if ((*it) == hname)
founddouble = true;
if (!founddouble)
{
hostnames.push_back(hname);
i++;
}
}
}
else
foundentry = false;
}
}
bool found = false;
if (!hostnames.empty()) // try to select the most appropriate hostname
{
std::list<std::string>::const_iterator it;
hostnames.sort();
for (it = hostnames.begin(); !found && it != hostnames.end(); it++)
{
if ((*it).find('.') != std::string::npos)
{
found = true;
localhostnamelength = (*it).length();
localhostname = new uint8_t[localhostnamelength + 1];
if (localhostname == 0)
{
return ERR_RTP_OUTOFMEM;
}
memcpy(localhostname, (*it).c_str(), localhostnamelength);
localhostname[localhostnamelength] = 0;
}
}
}
if (!found) // use an IP address
{
uint32_t ip;
int len;
char str[16];
it = localIPs.begin();
ip = (*it);
RTP_SNPRINTF(str, 16, "%d.%d.%d.%d", (int) ((ip >> 24) & 0xFF), (int) ((ip >> 16) & 0xFF), (int) ((ip >> 8) & 0xFF), (int) (ip & 0xFF));
len = strlen(str);
localhostnamelength = len;
localhostname = new uint8_t[localhostnamelength + 1];
if (localhostname == 0)
{
return ERR_RTP_OUTOFMEM;
}
memcpy(localhostname, str, localhostnamelength);
localhostname[localhostnamelength] = 0;
}
}
if ((*bufferlength) < localhostnamelength)
{
*bufferlength = localhostnamelength; // tell the application the required size of the buffer
return ERR_RTP_TRANS_BUFFERLENGTHTOOSMALL;
}
memcpy(buffer, localhostname, localhostnamelength);
*bufferlength = localhostnamelength;
return 0;
}
bool RTPUDPv4TransmitterNoBind::ComesFromThisTransmitter(const RTPAddress *addr)
{
if (!init)
return false;
if (addr == 0)
return false;
bool v;
if (created && addr->GetAddressType() == RTPAddress::IPv4Address)
{
const RTPIPv4Address *addr2 = (const RTPIPv4Address *) addr;
bool found = false;
std::list<uint32_t>::const_iterator it;
it = localIPs.begin();
while (!found && it != localIPs.end())
{
if (addr2->GetIP() == *it)
found = true;
else
++it;
}
if (!found)
v = false;
else
{
if (addr2->GetPort() == m_rtpPort || addr2->GetPort() == m_rtcpPort) // check for RTP port and RTCP port
v = true;
else
v = false;
}
}
else
v = false;
return v;
}
int RTPUDPv4TransmitterNoBind::Poll()
{
if (!init)
return ERR_RTP_UDPV4TRANS_NOTINIT;
int status;
if (!created)
{
return ERR_RTP_UDPV4TRANS_NOTCREATED;
}
status = PollSocket(true); // poll RTP socket
if (rtpsock != rtcpsock) // no need to poll twice when multiplexing
{
if (status >= 0)
status = PollSocket(false); // poll RTCP socket
}
return status;
}
int RTPUDPv4TransmitterNoBind::WaitForIncomingData(const RTPTime &delay, bool *dataavailable)
{
if (!init)
return ERR_RTP_UDPV4TRANS_NOTINIT;
if (!created)
{
return ERR_RTP_UDPV4TRANS_NOTCREATED;
}
if (waitingfordata)
{
return ERR_RTP_UDPV4TRANS_ALREADYWAITING;
}
SocketType abortSocket = m_pAbortDesc->GetAbortSocket();
SocketType socks[3] =
{ rtpsock, rtcpsock, abortSocket };
int8_t readflags[3] =
{ 0, 0, 0 };
const int idxRTP = 0;
const int idxRTCP = 1;
const int idxAbort = 2;
waitingfordata = true;
int status = RTPSelect(socks, readflags, 3, delay);
if (status < 0)
{
waitingfordata = false;
return status;
}
waitingfordata = false;
if (!created) // destroy called
{
;
return 0;
}
// if aborted, read from abort buffer
if (readflags[idxAbort])
m_pAbortDesc->ReadSignallingByte();
if (dataavailable != 0)
{
if (readflags[idxRTP] || readflags[idxRTCP])
*dataavailable = true;
else
*dataavailable = false;
}
return 0;
}
int RTPUDPv4TransmitterNoBind::AbortWait()
{
if (!init)
return ERR_RTP_UDPV4TRANS_NOTINIT;
if (!created)
{
return ERR_RTP_UDPV4TRANS_NOTCREATED;
}
if (!waitingfordata)
{
return ERR_RTP_UDPV4TRANS_NOTWAITING;
}
m_pAbortDesc->SendAbortSignal();
return 0;
}
int RTPUDPv4TransmitterNoBind::SendRTPData(const void *data, std::size_t len)
{
if (!init)
return ERR_RTP_UDPV4TRANS_NOTINIT;
if (!created)
{
return ERR_RTP_UDPV4TRANS_NOTCREATED;
}
if (len > maxpacksize)
{
return ERR_RTP_UDPV4TRANS_SPECIFIEDSIZETOOBIG;
}
destinations.GotoFirstElement();
while (destinations.HasCurrentElement())
{
sendto(rtpsock, (const char *) data, len, 0, (const struct sockaddr *) destinations.GetCurrentElement().GetRTPSockAddr(), sizeof(struct sockaddr_in));
destinations.GotoNextElement();
}
return 0;
}
int RTPUDPv4TransmitterNoBind::SendRTCPData(const void *data, std::size_t len)
{
if (!init)
return ERR_RTP_UDPV4TRANS_NOTINIT;
if (!created)
{
return ERR_RTP_UDPV4TRANS_NOTCREATED;
}
if (len > maxpacksize)
{
return ERR_RTP_UDPV4TRANS_SPECIFIEDSIZETOOBIG;
}
destinations.GotoFirstElement();
while (destinations.HasCurrentElement())
{
sendto(rtcpsock, (const char *) data, len, 0, (const struct sockaddr *) destinations.GetCurrentElement().GetRTCPSockAddr(), sizeof(struct sockaddr_in));
destinations.GotoNextElement();
}
return 0;
}
int RTPUDPv4TransmitterNoBind::AddDestination(const RTPAddress &addr)
{
if (!init)
return ERR_RTP_UDPV4TRANS_NOTINIT;
if (!created)
{
return ERR_RTP_UDPV4TRANS_NOTCREATED;
}
RTPIPv4Destination dest;
if (!RTPIPv4Destination::AddressToDestination(addr, dest))
{
return ERR_RTP_UDPV4TRANS_INVALIDADDRESSTYPE;
}
int status = destinations.AddElement(dest);
return status;
}
int RTPUDPv4TransmitterNoBind::DeleteDestination(const RTPAddress &addr)
{
if (!init)
return ERR_RTP_UDPV4TRANS_NOTINIT;
if (!created)
{
return ERR_RTP_UDPV4TRANS_NOTCREATED;
}
RTPIPv4Destination dest;
if (!RTPIPv4Destination::AddressToDestination(addr, dest))
{
return ERR_RTP_UDPV4TRANS_INVALIDADDRESSTYPE;
}
int status = destinations.DeleteElement(dest);
return status;
}
void RTPUDPv4TransmitterNoBind::ClearDestinations()
{
if (!init)
return;
if (created)
destinations.Clear();
}
bool RTPUDPv4TransmitterNoBind::SupportsMulticasting()
{
if (!init)
return false;
bool v;
if (!created)
v = false;
else
v = supportsmulticasting;
return v;
}
#ifdef RTP_SUPPORT_IPV4MULTICAST
int RTPUDPv4TransmitterNoBind::JoinMulticastGroup(const RTPAddress &addr)
{
if (!init)
return ERR_RTP_UDPV4TRANS_NOTINIT;
int status;
if (!created)
{
return ERR_RTP_UDPV4TRANS_NOTCREATED;
}
if (addr.GetAddressType() != RTPAddress::IPv4Address)
{
return ERR_RTP_UDPV4TRANS_INVALIDADDRESSTYPE;
}
const RTPIPv4Address &address = (const RTPIPv4Address &) addr;
uint32_t mcastIP = address.GetIP();
if (!RTPUDPV4TRANSNOBIND_IS_MCASTADDR(mcastIP))
{
return ERR_RTP_UDPV4TRANS_NOTAMULTICASTADDRESS;
}
status = multicastgroups.AddElement(mcastIP);
if (status >= 0)
{
RTPUDPV4TRANSNOBIND_MCASTMEMBERSHIP(rtpsock, IP_ADD_MEMBERSHIP, mcastIP, status);
if (status != 0)
{
multicastgroups.DeleteElement(mcastIP);
return ERR_RTP_UDPV4TRANS_COULDNTJOINMULTICASTGROUP;
}
if (rtpsock != rtcpsock) // no need to join multicast group twice when multiplexing
{
RTPUDPV4TRANSNOBIND_MCASTMEMBERSHIP(rtcpsock, IP_ADD_MEMBERSHIP, mcastIP, status);
if (status != 0)
{
RTPUDPV4TRANSNOBIND_MCASTMEMBERSHIP(rtpsock, IP_DROP_MEMBERSHIP, mcastIP, status);
multicastgroups.DeleteElement(mcastIP);
return ERR_RTP_UDPV4TRANS_COULDNTJOINMULTICASTGROUP;
}
}
}
return status;
}
int RTPUDPv4TransmitterNoBind::LeaveMulticastGroup(const RTPAddress &addr)
{
if (!init)
return ERR_RTP_UDPV4TRANS_NOTINIT;
int status;
if (!created)
{
return ERR_RTP_UDPV4TRANS_NOTCREATED;
}
if (addr.GetAddressType() != RTPAddress::IPv4Address)
{
return ERR_RTP_UDPV4TRANS_INVALIDADDRESSTYPE;
}
const RTPIPv4Address &address = (const RTPIPv4Address &) addr;
uint32_t mcastIP = address.GetIP();
if (!RTPUDPV4TRANSNOBIND_IS_MCASTADDR(mcastIP))
{
return ERR_RTP_UDPV4TRANS_NOTAMULTICASTADDRESS;
}
status = multicastgroups.DeleteElement(mcastIP);
if (status >= 0)
{
RTPUDPV4TRANSNOBIND_MCASTMEMBERSHIP(rtpsock, IP_DROP_MEMBERSHIP, mcastIP, status);
if (rtpsock != rtcpsock) // no need to leave multicast group twice when multiplexing
RTPUDPV4TRANSNOBIND_MCASTMEMBERSHIP(rtcpsock, IP_DROP_MEMBERSHIP, mcastIP, status);
status = 0;
}
return status;
}
void RTPUDPv4TransmitterNoBind::LeaveAllMulticastGroups()
{
if (!init)
return;
if (created)
{
multicastgroups.GotoFirstElement();
while (multicastgroups.HasCurrentElement())
{
uint32_t mcastIP;
int status __attribute__((unused)) = 0;
mcastIP = multicastgroups.GetCurrentElement();
RTPUDPV4TRANSNOBIND_MCASTMEMBERSHIP(rtpsock, IP_DROP_MEMBERSHIP, mcastIP, status);
if (rtpsock != rtcpsock) // no need to leave multicast group twice when multiplexing
RTPUDPV4TRANSNOBIND_MCASTMEMBERSHIP(rtcpsock, IP_DROP_MEMBERSHIP, mcastIP, status);
multicastgroups.GotoNextElement();
}
multicastgroups.Clear();
}
}
#else // no multicast support
int RTPUDPv4TransmitterNoBind::JoinMulticastGroup(const RTPAddress &addr)
{
return ERR_RTP_UDPV4TRANS_NOMULTICASTSUPPORT;
}
int RTPUDPv4Transmitter::LeaveMulticastGroup(const RTPAddress &addr)
{
return ERR_RTP_UDPV4TRANS_NOMULTICASTSUPPORT;
}
void RTPUDPv4TransmitterNoBind::LeaveAllMulticastGroups()
{
}
#endif // RTP_SUPPORT_IPV4MULTICAST
int RTPUDPv4TransmitterNoBind::SetReceiveMode(RTPTransmitter::ReceiveMode m)
{
if (!init)
return ERR_RTP_UDPV4TRANS_NOTINIT;
if (!created)
{
return ERR_RTP_UDPV4TRANS_NOTCREATED;
}
if (m != receivemode)
{
receivemode = m;
acceptignoreinfo.Clear();
}
return 0;
}
int RTPUDPv4TransmitterNoBind::AddToIgnoreList(const RTPAddress &addr)
{
if (!init)
return ERR_RTP_UDPV4TRANS_NOTINIT;
int status;
if (!created)
{
return ERR_RTP_UDPV4TRANS_NOTCREATED;
}
if (addr.GetAddressType() != RTPAddress::IPv4Address)
{
return ERR_RTP_UDPV4TRANS_INVALIDADDRESSTYPE;
}
if (receivemode != RTPTransmitter::IgnoreSome)
{
return ERR_RTP_UDPV4TRANS_DIFFERENTRECEIVEMODE;
}
const RTPIPv4Address &address = (const RTPIPv4Address &) addr;
status = ProcessAddAcceptIgnoreEntry(address.GetIP(), address.GetPort());
return status;
}
int RTPUDPv4TransmitterNoBind::DeleteFromIgnoreList(const RTPAddress &addr)
{
if (!init)
return ERR_RTP_UDPV4TRANS_NOTINIT;
int status;
if (!created)
{
return ERR_RTP_UDPV4TRANS_NOTCREATED;
}
if (addr.GetAddressType() != RTPAddress::IPv4Address)
{
return ERR_RTP_UDPV4TRANS_INVALIDADDRESSTYPE;
}
if (receivemode != RTPTransmitter::IgnoreSome)
{
return ERR_RTP_UDPV4TRANS_DIFFERENTRECEIVEMODE;
}
const RTPIPv4Address &address = (const RTPIPv4Address &) addr;
status = ProcessDeleteAcceptIgnoreEntry(address.GetIP(), address.GetPort());
return status;
}
void RTPUDPv4TransmitterNoBind::ClearIgnoreList()
{
if (!init)
return;
if (created && receivemode == RTPTransmitter::IgnoreSome)
ClearAcceptIgnoreInfo();
}
int RTPUDPv4TransmitterNoBind::AddToAcceptList(const RTPAddress &addr)
{
if (!init)
return ERR_RTP_UDPV4TRANS_NOTINIT;
int status;
if (!created)
{
return ERR_RTP_UDPV4TRANS_NOTCREATED;
}
if (addr.GetAddressType() != RTPAddress::IPv4Address)
{
return ERR_RTP_UDPV4TRANS_INVALIDADDRESSTYPE;
}
if (receivemode != RTPTransmitter::AcceptSome)
{
return ERR_RTP_UDPV4TRANS_DIFFERENTRECEIVEMODE;
}
const RTPIPv4Address &address = (const RTPIPv4Address &) addr;
status = ProcessAddAcceptIgnoreEntry(address.GetIP(), address.GetPort());
return status;
}
int RTPUDPv4TransmitterNoBind::DeleteFromAcceptList(const RTPAddress &addr)
{
if (!init)
return ERR_RTP_UDPV4TRANS_NOTINIT;
int status;
if (!created)
{
return ERR_RTP_UDPV4TRANS_NOTCREATED;
}
if (addr.GetAddressType() != RTPAddress::IPv4Address)
{
return ERR_RTP_UDPV4TRANS_INVALIDADDRESSTYPE;
}
if (receivemode != RTPTransmitter::AcceptSome)
{
return ERR_RTP_UDPV4TRANS_DIFFERENTRECEIVEMODE;
}
const RTPIPv4Address &address = (const RTPIPv4Address &) addr;
status = ProcessDeleteAcceptIgnoreEntry(address.GetIP(), address.GetPort());
return status;
}
void RTPUDPv4TransmitterNoBind::ClearAcceptList()
{
if (!init)
return;
if (created && receivemode == RTPTransmitter::AcceptSome)
ClearAcceptIgnoreInfo();
}
int RTPUDPv4TransmitterNoBind::SetMaximumPacketSize(std::size_t s)
{
if (!init)
return ERR_RTP_UDPV4TRANS_NOTINIT;
if (!created)
{
return ERR_RTP_UDPV4TRANS_NOTCREATED;
}
if (s > RTPUDPV4TRANSNOBIND_MAXPACKSIZE)
{
return ERR_RTP_UDPV4TRANS_SPECIFIEDSIZETOOBIG;
}
maxpacksize = s;
return 0;
}
bool RTPUDPv4TransmitterNoBind::NewDataAvailable()
{
if (!init)
return false;
bool v;
if (!created)
v = false;
else
{
if (rawpacketlist.empty())
v = false;
else
v = true;
}
return v;
}
RTPRawPacket *RTPUDPv4TransmitterNoBind::GetNextPacket()
{
if (!init)
return 0;
RTPRawPacket *p;
if (!created)
{
return 0;
}
if (rawpacketlist.empty())
{
return 0;
}
p = *(rawpacketlist.begin());
rawpacketlist.pop_front();
return p;
}
// Here the private functions start...
#ifdef RTP_SUPPORT_IPV4MULTICAST
bool RTPUDPv4TransmitterNoBind::SetMulticastTTL(uint8_t ttl)
{
int ttl2, status;
ttl2 = (int) ttl;
status = setsockopt(rtpsock, IPPROTO_IP, IP_MULTICAST_TTL, (const char *) &ttl2, sizeof(int));
if (status != 0)
return false;
if (rtpsock != rtcpsock) // no need to set TTL twice when multiplexing
{
status = setsockopt(rtcpsock, IPPROTO_IP, IP_MULTICAST_TTL, (const char *) &ttl2, sizeof(int));
if (status != 0)
return false;
}
return true;
}
#endif // RTP_SUPPORT_IPV4MULTICAST
void RTPUDPv4TransmitterNoBind::FlushPackets()
{
std::list<RTPRawPacket*>::const_iterator it;
for (it = rawpacketlist.begin(); it != rawpacketlist.end(); ++it)
delete *it;
rawpacketlist.clear();
}
int RTPUDPv4TransmitterNoBind::PollSocket(bool rtp)
{
RTPSOCKLENTYPE fromlen;
int recvlen;
char packetbuffer[RTPUDPV4TRANSNOBIND_MAXPACKSIZE];
#ifdef RTP_SOCKETTYPE_WINSOCK
SOCKET sock;
unsigned long len;
#else
std::size_t len;
int sock;
#endif // RTP_SOCKETTYPE_WINSOCK
struct sockaddr_in srcaddr;
bool dataavailable;
if (rtp)
sock = rtpsock;
else
sock = rtcpsock;
do
{
len = 0;
RTPIOCTL(sock, FIONREAD, &len);
if (len <= 0) // make sure a packet of length zero is not queued
{
// An alternative workaround would be to just use non-blocking sockets.
// However, since the user does have access to the sockets and I do not
// know how this would affect anyone else's code, I chose to do it using
// an extra select call in case ioctl says the length is zero.
int8_t isset = 0;
int status = RTPSelect(&sock, &isset, 1, RTPTime(0));
if (status < 0)
return status;
if (isset)
dataavailable = true;
else
dataavailable = false;
}
else
dataavailable = true;
if (dataavailable)
{
RTPTime curtime = RTPTime::CurrentTime();
fromlen = sizeof(struct sockaddr_in);
recvlen = recvfrom(sock, packetbuffer, RTPUDPV4TRANSNOBIND_MAXPACKSIZE, 0, (struct sockaddr *) &srcaddr, &fromlen);
if (recvlen > 0)
{
bool acceptdata;
// got data, process it
if (receivemode == RTPTransmitter::AcceptAll)
acceptdata = true;
else
acceptdata = ShouldAcceptData(ntohl(srcaddr.sin_addr.s_addr), ntohs(srcaddr.sin_port));
if (acceptdata)
{
RTPRawPacket *pack;
RTPIPv4Address *addr;
uint8_t *datacopy;
addr = new RTPIPv4Address(ntohl(srcaddr.sin_addr.s_addr), ntohs(srcaddr.sin_port));
if (addr == 0)
return ERR_RTP_OUTOFMEM;
datacopy = new uint8_t[recvlen];
if (datacopy == 0)
{
delete addr;
return ERR_RTP_OUTOFMEM;
}
memcpy(datacopy, packetbuffer, recvlen);
bool isrtp = rtp;
if (rtpsock == rtcpsock) // check payload type when multiplexing
{
isrtp = true;
if ((std::size_t) recvlen > sizeof(RTCPCommonHeader))
{
RTCPCommonHeader *rtcpheader = (RTCPCommonHeader *) datacopy;
uint8_t packettype = rtcpheader->packettype;
if (packettype >= 200 && packettype <= 204)
isrtp = false;
}
}
pack = new RTPRawPacket(datacopy, recvlen, addr, curtime, isrtp);
if (pack == 0)
{
delete addr;
delete[] datacopy;
return ERR_RTP_OUTOFMEM;
}
rawpacketlist.push_back(pack);
}
}
}
} while (dataavailable);
return 0;
}
int RTPUDPv4TransmitterNoBind::ProcessAddAcceptIgnoreEntry(uint32_t ip, uint16_t port)
{
acceptignoreinfo.GotoElement(ip);
if (acceptignoreinfo.HasCurrentElement()) // An entry for this IP address already exists
{
PortInfo *portinf = acceptignoreinfo.GetCurrentElement();
if (port == 0) // select all ports
{
portinf->all = true;
portinf->portlist.clear();
}
else if (!portinf->all)
{
std::list<uint16_t>::const_iterator it, begin, end;
begin = portinf->portlist.begin();
end = portinf->portlist.end();
for (it = begin; it != end; it++)
{
if (*it == port) // already in list
return 0;
}
portinf->portlist.push_front(port);
}
}
else // got to create an entry for this IP address
{
PortInfo *portinf;
int status;
portinf = new PortInfo();
if (port == 0) // select all ports
portinf->all = true;
else
portinf->portlist.push_front(port);
status = acceptignoreinfo.AddElement(ip, portinf);
if (status < 0)
{
delete portinf;
return status;
}
}
return 0;
}
void RTPUDPv4TransmitterNoBind::ClearAcceptIgnoreInfo()
{
acceptignoreinfo.GotoFirstElement();
while (acceptignoreinfo.HasCurrentElement())
{
PortInfo *inf;
inf = acceptignoreinfo.GetCurrentElement();
delete inf;
acceptignoreinfo.GotoNextElement();
}
acceptignoreinfo.Clear();
}
int RTPUDPv4TransmitterNoBind::ProcessDeleteAcceptIgnoreEntry(uint32_t ip, uint16_t port)
{
acceptignoreinfo.GotoElement(ip);
if (!acceptignoreinfo.HasCurrentElement())
return ERR_RTP_UDPV4TRANS_NOSUCHENTRY;
PortInfo *inf;
inf = acceptignoreinfo.GetCurrentElement();
if (port == 0) // delete all entries
{
inf->all = false;
inf->portlist.clear();
}
else // a specific port was selected
{
if (inf->all) // currently, all ports are selected. Add the one to remove to the list
{
// we have to check if the list doesn't contain the port already
std::list<uint16_t>::const_iterator it, begin, end;
begin = inf->portlist.begin();
end = inf->portlist.end();
for (it = begin; it != end; it++)
{
if (*it == port) // already in list: this means we already deleted the entry
return ERR_RTP_UDPV4TRANS_NOSUCHENTRY;
}
inf->portlist.push_front(port);
}
else // check if we can find the port in the list
{
std::list<uint16_t>::iterator it, begin, end;
begin = inf->portlist.begin();
end = inf->portlist.end();
for (it = begin; it != end; ++it)
{
if (*it == port) // found it!
{
inf->portlist.erase(it);
return 0;
}
}
// didn't find it
return ERR_RTP_UDPV4TRANS_NOSUCHENTRY;
}
}
return 0;
}
bool RTPUDPv4TransmitterNoBind::ShouldAcceptData(uint32_t srcip, uint16_t srcport)
{
if (receivemode == RTPTransmitter::AcceptSome)
{
PortInfo *inf;
acceptignoreinfo.GotoElement(srcip);
if (!acceptignoreinfo.HasCurrentElement())
return false;
inf = acceptignoreinfo.GetCurrentElement();
if (!inf->all) // only accept the ones in the list
{
std::list<uint16_t>::const_iterator it, begin, end;
begin = inf->portlist.begin();
end = inf->portlist.end();
for (it = begin; it != end; it++)
{
if (*it == srcport)
return true;
}
return false;
}
else // accept all, except the ones in the list
{
std::list<uint16_t>::const_iterator it, begin, end;
begin = inf->portlist.begin();
end = inf->portlist.end();
for (it = begin; it != end; it++)
{
if (*it == srcport)
return false;
}
return true;
}
}
else // IgnoreSome
{
PortInfo *inf;
acceptignoreinfo.GotoElement(srcip);
if (!acceptignoreinfo.HasCurrentElement())
return true;
inf = acceptignoreinfo.GetCurrentElement();
if (!inf->all) // ignore the ports in the list
{
std::list<uint16_t>::const_iterator it, begin, end;
begin = inf->portlist.begin();
end = inf->portlist.end();
for (it = begin; it != end; it++)
{
if (*it == srcport)
return false;
}
return true;
}
else // ignore all, except the ones in the list
{
std::list<uint16_t>::const_iterator it, begin, end;
begin = inf->portlist.begin();
end = inf->portlist.end();
for (it = begin; it != end; it++)
{
if (*it == srcport)
return true;
}
return false;
}
}
return true;
}
int RTPUDPv4TransmitterNoBind::CreateLocalIPList()
{
// first try to obtain the list from the network interface info
if (!GetLocalIPList_Interfaces())
{
// If this fails, we'll have to depend on DNS info
GetLocalIPList_DNS();
}
AddLoopbackAddress();
return 0;
}
#ifdef RTP_SOCKETTYPE_WINSOCK
bool RTPUDPv4TransmitterNoBind::GetLocalIPList_Interfaces()
{
unsigned char buffer[RTPUDPV4TRANSNOBIND_IFREQBUFSIZE];
DWORD outputsize;
DWORD numaddresses,i;
SOCKET_ADDRESS_LIST *addrlist;
if (WSAIoctl(rtpsock,SIO_ADDRESS_LIST_QUERY,NULL,0,&buffer,RTPUDPV4TRANSNOBIND_IFREQBUFSIZE,&outputsize,NULL,NULL))
return false;
addrlist = (SOCKET_ADDRESS_LIST *)buffer;
numaddresses = addrlist->iAddressCount;
for (i = 0; i < numaddresses; i++)
{
SOCKET_ADDRESS *sockaddr = &(addrlist->Address[i]);
if (sockaddr->iSockaddrLength == sizeof(struct sockaddr_in)) // IPv4 address
{
struct sockaddr_in *addr = (struct sockaddr_in *)sockaddr->lpSockaddr;
localIPs.push_back(ntohl(addr->sin_addr.s_addr));
}
}
if (localIPs.empty())
return false;
return true;
}
#else // use either getifaddrs or ioctl
#ifdef RTP_SUPPORT_IFADDRS
bool RTPUDPv4TransmitterNoBind::GetLocalIPList_Interfaces()
{
struct ifaddrs *addrs, *tmp;
getifaddrs(&addrs);
tmp = addrs;
while (tmp != 0)
{
if (tmp->ifa_addr != 0 && tmp->ifa_addr->sa_family == AF_INET)
{
struct sockaddr_in *inaddr = (struct sockaddr_in *) tmp->ifa_addr;
localIPs.push_back(ntohl(inaddr->sin_addr.s_addr));
}
tmp = tmp->ifa_next;
}
freeifaddrs(addrs);
if (localIPs.empty())
return false;
return true;
}
#else // user ioctl
bool RTPUDPv4TransmitterNoBind::GetLocalIPList_Interfaces()
{
int status;
char buffer[RTPUDPV4TRANSNOBIND_IFREQBUFSIZE];
struct ifconf ifc;
struct ifreq *ifr;
struct sockaddr *sa;
char *startptr,*endptr;
int remlen;
ifc.ifc_len = RTPUDPV4TRANSNOBIND_IFREQBUFSIZE;
ifc.ifc_buf = buffer;
status = ioctl(rtpsock,SIOCGIFCONF,&ifc);
if (status < 0)
return false;
startptr = (char *)ifc.ifc_req;
endptr = startptr + ifc.ifc_len;
remlen = ifc.ifc_len;
while((startptr < endptr) && remlen >= (int)sizeof(struct ifreq))
{
ifr = (struct ifreq *)startptr;
sa = &(ifr->ifr_addr);
#ifdef RTP_HAVE_SOCKADDR_LEN
if (sa->sa_len <= sizeof(struct sockaddr))
{
if (sa->sa_len == sizeof(struct sockaddr_in) && sa->sa_family == PF_INET)
{
uint32_t ip;
struct sockaddr_in *addr = (struct sockaddr_in *)sa;
ip = ntohl(addr->sin_addr.s_addr);
localIPs.push_back(ip);
}
remlen -= sizeof(struct ifreq);
startptr += sizeof(struct ifreq);
}
else
{
int l = sa->sa_len-sizeof(struct sockaddr)+sizeof(struct ifreq);
remlen -= l;
startptr += l;
}
#else // don't have sa_len in struct sockaddr
if (sa->sa_family == PF_INET)
{
uint32_t ip;
struct sockaddr_in *addr = (struct sockaddr_in *)sa;
ip = ntohl(addr->sin_addr.s_addr);
localIPs.push_back(ip);
}
remlen -= sizeof(struct ifreq);
startptr += sizeof(struct ifreq);
#endif // RTP_HAVE_SOCKADDR_LEN
}
if (localIPs.empty())
return false;
return true;
}
#endif // RTP_SUPPORT_IFADDRS
#endif // RTP_SOCKETTYPE_WINSOCK
void RTPUDPv4TransmitterNoBind::GetLocalIPList_DNS()
{
struct hostent *he;
char name[1024];
bool done;
int i, j;
gethostname(name, 1023);
name[1023] = 0;
he = gethostbyname(name);
if (he == 0)
return;
i = 0;
done = false;
while (!done)
{
if (he->h_addr_list[i] == NULL)
done = true;
else
{
uint32_t ip = 0;
for (j = 0; j < 4; j++)
ip |= ((uint32_t) ((unsigned char) he->h_addr_list[i][j]) << ((3 - j) * 8));
localIPs.push_back(ip);
i++;
}
}
}
void RTPUDPv4TransmitterNoBind::AddLoopbackAddress()
{
uint32_t loopbackaddr = (((uint32_t) 127) << 24) | ((uint32_t) 1);
std::list<uint32_t>::const_iterator it;
bool found = false;
for (it = localIPs.begin(); !found && it != localIPs.end(); it++)
{
if (*it == loopbackaddr)
found = true;
}
if (!found)
localIPs.push_back(loopbackaddr);
}
} // end namespace