1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-22 08:04:49 -05:00
sdrangel/sdrbase/dsp/agc.cpp

210 lines
4.4 KiB
C++

/*
* agc.cpp
*
* Created on: Sep 7, 2015
* Author: f4exb
*/
#include <algorithm>
#include "dsp/agc.h"
#include "util/stepfunctions.h"
AGC::AGC(int historySize, double R) :
m_u0(1.0),
m_R(R),
m_moving_average(historySize, m_R),
m_historySize(historySize),
m_count(0)
{}
AGC::~AGC()
{}
void AGC::resize(int historySize, double R)
{
m_R = R;
m_moving_average.resize(historySize, R);
m_historySize = historySize;
m_count = 0;
}
Real AGC::getValue()
{
return m_u0;
}
Real AGC::getAverage()
{
return m_moving_average.average();
}
MagAGC::MagAGC(int historySize, double R, double threshold) :
AGC(historySize, R),
m_squared(false),
m_magsq(0.0),
m_threshold(threshold),
m_thresholdEnable(true),
m_gate(0),
m_stepLength(std::min(2400, historySize/2)), // max 50 ms (at 48 kHz)
m_stepDelta(1.0/m_stepLength),
m_stepUpCounter(0),
m_stepDownCounter(0),
m_gateCounter(0),
m_stepDownDelay(historySize),
m_clamping(false),
m_R2(R*R),
m_clampMax(1.0),
m_hardLimiting(false)
{}
MagAGC::~MagAGC()
{}
void MagAGC::resize(int historySize, int stepLength, Real R)
{
m_R2 = R*R;
m_stepLength = stepLength;
m_stepDelta = 1.0 / m_stepLength;
m_stepUpCounter = 0;
m_stepDownCounter = 0;
AGC::resize(historySize, R);
m_moving_average.fill(0);
}
void MagAGC::setOrder(double R)
{
m_R2 = R*R;
AGC::setOrder(R);
m_moving_average.fill(0);
}
void MagAGC::setThresholdEnable(bool enable)
{
if (m_thresholdEnable != enable)
{
m_stepUpCounter = 0;
m_stepDownCounter = 0;
}
m_thresholdEnable = enable;
}
void MagAGC::feed(Complex& ci)
{
ci *= feedAndGetValue(ci);
}
double MagAGC::hardLimiter(double multiplier, double magsq)
{
if ((m_hardLimiting) && (multiplier*multiplier*magsq > 1.0)) {
return 1.0 / (multiplier*sqrt(magsq));
} else {
return multiplier;
}
}
double MagAGC::feedAndGetValue(const Complex& ci)
{
m_magsq = ci.real()*ci.real() + ci.imag()*ci.imag();
m_moving_average.feed(m_magsq);
if (m_clamping)
{
if (m_squared)
{
if (m_magsq > m_clampMax) {
m_u0 = m_clampMax / m_magsq;
} else {
m_u0 = m_R / m_moving_average.average();
}
}
else
{
if (sqrt(m_magsq) > m_clampMax) {
m_u0 = m_clampMax / sqrt(m_magsq);
} else {
m_u0 = m_R / sqrt(m_moving_average.average());
}
}
}
else
{
m_u0 = m_R / (m_squared ? m_moving_average.average() : sqrt(m_moving_average.average()));
}
if (m_thresholdEnable)
{
bool open = false;
if (m_magsq > m_threshold)
{
if (m_gateCounter < m_gate) {
m_gateCounter++;
} else {
open = true;
}
}
else
{
m_gateCounter = 0;
}
if (open)
{
m_count = m_stepDownDelay; // delay before step down (grace delay)
}
else
{
m_count--;
m_gateCounter = m_gate; // keep gate open during grace
}
if (m_count > 0) // up phase
{
m_stepDownCounter = m_stepUpCounter; // prepare for step down
if (m_stepUpCounter < m_stepLength) // step up
{
m_stepUpCounter++;
return hardLimiter(m_u0 * StepFunctions::smootherstep(m_stepUpCounter * m_stepDelta), m_magsq);
}
else // steady open
{
return hardLimiter(m_u0, m_magsq);
}
}
else // down phase
{
m_stepUpCounter = m_stepDownCounter; // prepare for step up
if (m_stepDownCounter > 0) // step down
{
m_stepDownCounter--;
return hardLimiter(m_u0 * StepFunctions::smootherstep(m_stepDownCounter * m_stepDelta), m_magsq);
}
else // steady closed
{
return 0.0;
}
}
}
else
{
return hardLimiter(m_u0, m_magsq);
}
}
float MagAGC::getStepValue() const
{
if (m_count > 0) // up phase
{
return StepFunctions::smootherstep(m_stepUpCounter * m_stepDelta); // step up
}
else // down phase
{
return StepFunctions::smootherstep(m_stepDownCounter * m_stepDelta); // step down
}
}